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FOREWORD 

 

The Self-Learning Material (SLM) is written with the aim of providing 

simple and organized study content to all the learners. The SLMs are 

prepared on the framework of being mutually cohesive, internally 

consistent and structured as per the university’s syllabi. It is a humble 

attempt to give glimpses of the various approaches and dimensions to the 

topic of study and to kindle the learner’s interest to the subject 

 

We have tried to put together information from various sources into this 

book that has been written in an engaging style with interesting and 

relevant examples. It introduces you to the insights of subject concepts 

and theories and presents them in a way that is easy to understand and 

comprehend.  

 

We always believe in continuous improvement and would periodically 

update the content in the very interest of the learners. It may be added 

that despite enormous efforts and coordination, there is every possibility 

for some omission or inadequacy in few areas or topics, which would 

definitely be rectified in future. 

 

We hope you enjoy learning from this book and the experience truly 

enrich your learning and help you to advance in your career and future 

endeavours. 
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BLOCK 1 ANALYSIS OF SEVERAL 

VARIABLES  

 

Introduction to the Block 

In this block we will go through In mathematics advanced calculus 

whose aim is to provide a firm logical foundation of analysis of calculus 

and a course in linear algebra treats analysis in one variable & analysis in 

several variables. 

Unit I Deals with Topology  

Unit II Deals with The Space Of Linear Transformations From R
m  

To 

R
n

 
 

Unit III Deals with Local Properties Of Continuous Functions 

Unit IV Deals with The Basic Facts Of Differential Calculus Of  Real-

Valued Functions Of Several Variables 

Unit V Deals with Transition To The Case Of A Relation  

Unit VI Deals withTaylor's Theorem 

Unit VII Deals with A Sufficient Condition For A Constrained 

Extremum 
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UNIT - 1: TOPOLOGY 

STRUCTURE 

1.0 Objectives 

1.1 Introduction 

1.2 Topology       

1.3 Topological spaces      

1.4 Constructions with topological spaces  

1.5 Properties of topological spaces  

1.6 One variable calculus  

1.7 The differential calculus of functions of several variables 

1.8 Let Us Sum Up 

1.9 Keywords 

1.10 Questions for Review 

1.11 Answers to Check Your Progress 

1.12 References 

 

1.0 OBJECTIVES 

After studying this unit, you should be able to: 

Learn, Understand about Topology    

Learn, Understand about Topological spaces   

Learn,  Understand about Constructions with topological 

spaces  

Learn, Understand about Properties of topological spaces  

Learn, Understand about One variable calculus  

Learn, Understand about The differential calculus of functions of several 

variables 
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1.1 INTRODUCTION 

In mathematics advanced calculus whose aim is to provide a firm logical 

foundation of analysis of calculus and a course in linear algebra treats 

analysis in one variable & analysis in several variables 

Topology,  Metric Spaces, Topological spaces, Constructions with 

topological spaces, Properties of topological spaces, One variable 

calculus, The differential calculus of functions of several variables 

 

1.2 TOPOLOGY 

METRIC SPACES  

A Map f R
M

 M  R  between Euclidean Spaces is Continuous iff 

Vx G X Ve  > 34 > 0 Vy G X d(x, y)< 4 ^ d(f(x), f(y))< e 

Where d(x, y)=||x -  y\ \=V(xi -  yi)
2
 4….4(xra -  y„)

2
 G  R>o 

is the Euclidean distance between two points x, y in R
n
. 

 Example(Examples of continuous maps .) 

1. The addition map a: R
2
 M  R, x=(xi, x2)M  xi + x2; 

2. The multiplication map m: R
2
 M  R, x=(xi, x2)M  xix2; 

The proofs that these maps are continuous are simple estimates that you 

probably remember from calculus. Since the continuity of all the maps 

we'll look at in these notes is proved by expressing them in terms of the 

maps a and m, we include the proofs of continuity of a and m for 

completeness. 

Proof. To prove that the addition map a is continuous, suppose x=(x^ 

x2)E  R
2
 and e > 0 are given. We claim that for 8 := e /2 and y=(yi, y2)E  

R
2
 with d(x, y)<8 we have d(a(x), a(y)) < e and hence a is a continuous 

function. To prove the claim, we note that 
d(x, 

y
)
=V

| x
i  

-
 yi

| 2
 + 

| x
2

-
 

y2
| 2  

an d  henc e  |x1  — y1| < d(x, y), |x1  — y1| < d(x, y). It follows that 
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d(a(x), a(y))=|a(x) —  a(y)|= 

|xi  + x2  —  yi  —  y2 1  <  |xi   —  yi |  + |x2   —  y2 1  <  2d(x, y)< 

28=e. 

To prove that the multiplication map m is continuous, we claim that for 8 

:= min{ 1, e /(|xi| + |x21  + 1)} and y=(yi, y2)E  R
2
 with d(x, y)<8 we have 

d(m(x), m(y)) < e and hence m is a continuous function. The claim 

follows from the following estimates: 

d(m(y), m(x))=|yi y2   —  x^|=|yi y2   —  xi y2  + xi y2   —  xi x2 |  

< |yi y2   —  xi y2 |  + |xi y2   —  xi x2 | =|yi   —  xi ||y2 |  + |xi ||y2   —  

x2 |  

<
 d ( x ,  

y
) ( |

y2
|
 + 

|x
i
|)
<  

d ( x ,  
y

)(|x
2

|
 + 

|
y2  —

 x
2

|
 + 

|x
i
|)
 

< d(x, y)(|xi |  + |x2 1  + 1)< 8(|xi |  + |x2 1  + 1)<  e 

 

 

Theorem. The function d:  R
n
 x R

n
  —  R>0  has the following 

properties:  

1. d(x, y)=0 if and only if x=y; 

2. d(x, y)=d(y, x)(symmetry); 

3. d(x, y)< d(x, z)+ d(z, y)(triangle inequali ty)  

 

Definition. A metric space is a set X equipped with a map 

d: X x  X  —y R> o  with properties(1)-(3)above. A map f: X  —  Y 

between metric spaces X, Y is continuous if condition is satisfied. an 

isometry if          d(f(x), f(y))=d(x, y)for all x, y E X; 

Two metric spaces X, Y are homeomorphic(resp. isometric)if there are 

continuous maps(resp. isometries)f: X  — Y and g: Y  — X which are 

inverses of each other. 

 

Example . An important class of examples of metric spaces are subsets 

of R
n
. 

1. The n-disk D
n
 := { x E R

n
||x| < 1 } C R

n
, and Dn := { x E 

R
n
||x| < r }, the n-disk of radius r > 0. The dilation map D

n
  —

► D
n
 x ^ rx   
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is a homeomorphism between D
n
 and Df with inverse given by 

multiplication by 1 /r. However, these two metric spaces are not 

isometric for r =1. To observe this, define the diameter diam(X)of a 

metric space X by diam(X):= sup{ d(x, y)| x, y E X } E R>0 U { ^ }. 

For example, diam(Df)=2r. It is easy to observe that if two metric 

spaces X, Y are isometric, then their diameters agree. In particular, 

the disks Df and Df are not isometric unless r=r'. 

2. The n-sphere S
n
 := { x E R

n+1
||x|=1 } C R

n+1
. 

3. The torus T={ v E R
3
|d(v, C)=r } for 0 < r < 1. Here 

C={(x, y, 0)| x
2
 + y

2
=1 } C R

3  
is the unit circle in xy-plane, and             

d(v, C)=infweC d(v, w)is the distance between v and C. 

4. The general  linear group  

GLn(R)={ vector space isomorphisms f: R
n
 ^ R

n
 } 

^^ {(vi, ..., vn)| vi E R
n
, det(vi, ..., vn)=0 } 

= { invertible n x n-matrices } C R
n
 x  — ■ x R"=R

n
 

Here we think of(v1, ..., vn)as an n x n-matrix with column vectors vi, 

and the bijection is the usual one in linear algebra that sends a linear 

map f: R
n
 ^ R

n
 to the matrix(f(e1), ..., f(en)) whose column vectors are 

the images of the standard basis elements ei E R
n
. 

5. The special linear group  

SLn( R)={(v1, . .., vn)| vi E R
n
, det(v1, . .., v, n)=1 } C 

R
n
 

6. The orthogonal group 

O(n)={ linear isometries f: R
n
 ^ R

n
 } 

= {(v1, ..., vn)| vi E R
n
, vi's are orthonormal } C R

n
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Collection of vectors vi E R
n
 is orthonormal if |vi|=1 for all i, and vi 

is perpendicular to vj for i=j. 

The special orthogonal group  

SO(n)=((v f ,  . . . ,  vn)e O(n)| det(v f ,  . . . ,  vn)=1 } C R
n
 

7. The Stiefel  manifold  

Vk(R
n
)=(linear isometries f: R

k
 m  R

n
 } 

=((v1, ..., vk)| vi e R
n
, Vj's are orthonormal } C 

R
kn

 

Example . The following maps between metric spaces are continuous. 

While it is possible to prove their continuity using the definition of 

continuity, it will be much simpler to prove their continuity by 'building' 

these maps using compositions and products from the continuous maps a 

and Every polynomial function f: R
n
 m  R is continuous is of the form 

f(xi, ...,Xn)=Z)il, ..., i„ aq, ..., in xf x^ for a^, ..., ^ e R. 

Let Mnxn(R)=R
n2

 be the set of n x n matrices. Then the map 

Mnxn(R)X Mn x n ( R )  -- M M,  n x n ( R)(A, 

B)M AB 

given by matrix multiplication is continuous. Here we use the fact that a 

map to the product Mnxn(R)=R
n
=R x • • • x R is continuous if and only if 

each component map is continuous and each matrix entry of AB is a 

polynomial and hence a continuous function of the matrix entries of A 

and B. Restricting to the invertible matrices GLn(R)C Mnxn(R), we 

observe that the multiplication map GLn(R)x GLn(R) —m  GLn(R)is 

continuous. The same holds for the subgroups SO(n)C O(n)C GLn(R). 

The map GLn(R)m  GLn(R), A A
-1

 is continuous for the subgroups of 

GLn(R).  The Euclidean metric on 

R
n
 given by d(x, y)=y /(xf  — yf)

2
 + • • • +(xn  — yn)

2
 for x, y e R

n
  

is not the only reasonable metric on R
n
. Another metric on R

n
 is given by 
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d
i

(x, 
y)=5 ^  

| x
i

—
 yi

|
. 

 

The question arises whether it can happen that a map f: R
n
 m  R

n
 is 

continuous with respect to one of these metrics, but not with respect to 

the other. To observe that this doesn’t happen, it is useful to characterize 

continuity of a map f: X m  Y between metric spaces X, Y in a way that 

involves the metrics on X and Y. 

This alternative characterization will be based on the following notion of 

"open subsets" of a metric space. 

 

Definition. Let X be a metric space. A subset U C X is open if for 

every point x E U there is some e > 0 such that Be(x)C U. Here 

Be(x)={ y E X|d(y, x)< e } is the ball of radius e around x. 

To illustrate this, Lets look at examples of subsets of R
n
 equipped 

with the Euclidean m etric. The subset D™={ v E R
n

|||v|| < r } C 

R
n

 is not open, since for a point v E Df with ||v||=r any open ball 

Be(v)with center v will contain points not in Df. By contrast, the 

subset Br(0)C R
n
 is open, since for any x E Br(0)the ball B$(x)of 

radius 8=r  — ||x|| 

is contained in Br(0), since for y E B$(x)by the triangle inequality we 

have 

d(y, 0)< d(y, x)+ d(x, 0)<8 + ||x||=(r  — ||x||)+ ||x||=r. 

 

Theorem. A map f: X ^ Y between metric spaces is 

continuous if  and only if  f
-1

(V) 

is an open subset of X for every open subset V C Y. 

 

Corollary.  If f:  X ^ Y and g: Y ^ Z are continuous maps , 

then so it their composition g o f: X ^ Z. 

 

Exercise . Let that d, d' are two metrics on a set X which are equivalent 

in the sense that there are constants C, C' > 0 such that d(x, y)< Cd1(x, 
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y)and    d1(x, y)< C'd(x, y)for all x, y E X. Show that a subset U C X is 

open with respect to d if and only if it is open with respect to d'. 

Show that the Euclidean metric d and the metric on R
n
 are equivalent. 

This shows in particular that a map f: R
n
 ^ R

n
 is continuous w.r.t. d if 

and only if it is continuous w.r.t. d1 . 

1.3 TOPOLOGICAL SPACES 

To define continuity of maps between metric spaces in terms of the open 

subsets of these metric space instead of the original. In fact, we can go 

one step further, forget about the metric on a set X altogether, and just 

consider a collection T of subsets of X that we declare to be "open". 

The next result summarizes the basic properties of open subsets of a 

metric space X, which then motivates the restrictions that we wish to put 

on such collections T. 

Theorem. Open subsets of a metric space X have the 

following properties .  

X and 0 are open. 

Any union of open sets is open . 

The intersection of any finite number of open sets is open . 

 

Definition. A topological space is a set X together with a collection T 

of subsets of X, known open sets which are required to satisfy 

conditions(i), (ii)and(iii)of the Theorem above. The collection T is 

known a topology on X. The sets in T are known the open sets, 

and their complements in X are known closed sets. A subset of X can 

be neither closed nor open, either closed or open, or both. 

A map f: X ^ Y between topological spaces X, Y is continuous if 

the inverse image f
-1

(V)of every open subset V C Y is an open subset 

of X. 

It is easy to observe that the composition of continuous 

maps is again continuous. 
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Examples of topological spaces. 

Let X be a metric space, and T the collection of those subsets of X that 

are unions of balls Be(x)in X(i.e., the subsets which are open in the sense 

of Definition. Then T is a topology on X, the metric topology. 

Let X be a set. Then T={ all subsets of X } is a topology, the discrete 

topology. We note that any map f: X ^ Y to a topological space Y is 

continuous. We will observe later that the only continuous maps R
n
 ^ X 

are the constant maps. 

Let X be a set. Then T={ 0, X } is a topology, the indiscrete topology. 

Sometimes it is convenient to define a topology U on a set X by first 

describing a smaller collection B of subsets of X, and then defining U to 

be those subsets of X that can be written as unions of subsets belonging 

to B. We've done this already when defining the metric topology: Let X 

be a metric space and Let B be the collection of subsets of X of the form 

Be(x):= { y E X|d(y, x)< e }(the balls in X). Then the metric topology U 

on X consists of those subsets U which are unions of subsets belonging 

to B. 

Theorem. Let  B be a collection of subsets of a set X 

satisfying the following conditions  

1. Every point x  E  X belongs to some 

subset B E  B. 

2. If Bi, B2  E B, then for every x  E  B1  f  

B2  there is  some B E  B with x E  B 

and 

B  c  B i  f B 2 .  

Then T := { unions of subsets belonging to  B } is a topology 

on X. 

Definition. If the above conditions are satisfied, we call the collection B 

is known a basis for the topology T or we say that B generates the 

topology T. 
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It is easy to check that the collection of balls in a metric space 

satisfies the above conditions and hence the collection of open subsets is 

a topology. 

 

1.4 CONSTRUCTIONS WITH 

TOPOLOGICAL SPACES 

Subspace topology 

Definition . Let X be a topological space, and A c X a subset. Then 

T={ A f U|U c X } open is a topology on A known the subspace 

topology. 

Theorem. Let  X be a metric space and A c  X. Then the 

metric topology on A agrees with the subspace topology on 

A(as a subset of X equipped with the metric topology ).  

Theorem. Let  X, Y be topological spaces and Let A be a 

subset of X equipped with the subspace topology. Then the 

inclusion map i:  A ^ X is continuous and a map f:  Y ^ A is 

continuous if  and only if  the composition i  o f: Y ^ X is 

continuous.  

 

Product topology 

Definition . The product topology on the Cartesian product X x Y={(x, 

y)| x E X, y E Y } of topological spaces X, Y is the topology with basis 

B={ U x V|U c X, V c Y }  open  

The collection B obviously satisfies property of a basis; property holds 

since(U x V)C(U' x V')=(U C U')x(V n V'). We note that the collection B 

is not a topology since the union of U x V and U' x V' is typically not a 

Cartesian product(e.g., draw a picture for the case where X=Y=R and U, 

U', V, V' are open intervals). 

 

Theorem. The product topology on R
-
 x R

n
(with each factor 

equipped with the metric topology)agrees with the metric 
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topology on    R
-
+

n
=R

-
 x R

n
. 

Theorem. Let  X, Y i ,  Y2 be topological spaces . Then the 

projection maps pi: Yi xY2 4 Y is continuous and a map f: X 4 Yi 

x Y2 is continuous if and only if the component maps X
f
 Yi  x 

Y2 ^WYi are continuous for i=1, 2. 

Theorem. .  Let X be a topological space and Let  f , g: X 4 R 

be continuous maps .  

Then f + g and f • g continuous maps from X to  R. If  g(x)=0 

for all x  E X, then also f  /g is continuous.  

Any polynomial function f : R
n
 4 R is continuous.  

The multiplication map p: GLn(R)x GLn(R)4 GLn(R)is 

continuous.  

Proof. we note that the map f + g: X 4 R can be factored in the form X  

— 4  R x  R - 4  R 

The map f x g is continuous since its component maps f, g are 

continuous; the map a is continuous, and hence the composition f + g is 

continuous. The argument for f • g is the same, with a replaced by m.  

 

To prove that f /g is continuous, we factor it in the form 

X ------------------------------ 
fx

^-R x R
x PlX(Jopa)

; R x R
x
 ---------------  - —

^R,  

where R
x
={ t E R|t=0 }, pi(resp. p2)is the projection to the first(resp. 

second)factor of R x R
x
, and I: R

x
 4 R

x
 is the inversion map t 4 t

-i
.  

we note that the constant map R
n
 M R, x=(x \,...,xn)M a is 

obviously continuous, and that the projection map pi: R
n
 M R, x=(xi, ..., 

xn)M xi is continuous monomial function x M axl
1
 ■ ■ ■  
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x
%

n is continuous. Any polynomial function is a sum of monomial 

functions and hence continuous. Let Mnxn(R)=R
n
 be the set of n x n 

matrices and Let L : Mnxn(R)x Mnxn( R )  M M, nxn( R)(A, B)M AB 

be the map given by matrix multiplication. The map p is continuous if 

and only if the composition 

Mnxn(R)X  Mnxn(R) —M  M,  n x n ( R)~ ~ M  R 

is continuous for all 1 < i, j < n, where pi j  is the projection map that 

sends a matrix A to its entry Ai j  G R. Since the pj(p(A, B))=(A ■ B) i j  is 

a polynomial in the entries of the matrices A and B, this is a continuous 

map and hence p is continuous. Restricting p to invertible matrices, we 

obtain the multiplication map 

L|: GLn ( R)x GLn (R) —m  GLn (R) 

that we want to show is continuous. We will argue that in general if f: X 

M Y is a continuous map with f(A)C B for subsets A C X, B C Y, then 

the restriction f|A: A M B is continuous. 

AB 

i j  

X Y 

where i, j are obvious inclusion maps. These inclusion maps are 

continuous w.r.t. the subspace topology on A, B by Theorem. The 

continuity of f and i implies the continuity of f o i=j o f|A which again by 

Theorem implies the continuity of f|A.  

Quotient topology.  

Definition. Let X be a topological space and Let ~ be an equivalence 

relation on X. We denote by X/~ be the set of equivalence classes and by 

p: X M X/~ x M [x] 

be the projection map that sends a point x G X to its equivalence class 

[x]. The quotient topology on X/~ is given by the collection of subsets 

U={ U C X/~| p
-1

(U)is an open subset of X }. 
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The set X/~ equipped with the quotient topology is known the quotient 

space. 

The quotient topology is often used to construct a topology on a set Y 

which is not a subset of some Euclidean space R
n
, or for which it is not 

clear how to construct a metric.  

If there is a surjective map p: X  —y Y from a topological space X, then 

Y can be identified with quotient space X/ —, where the equivalence 

relation is given by x   — x' if  and only if p(x)=p(x').  In 

particular , Y=X/ —can be equipped with the quotient topology. Here 

are important examples. 

 

Example. The real projective space of dimension n  is the set 

RP
n
 := { 1-dimensional subspaces of R

n+1
 }. 

The map S
n
  —y RP

n
 R

n+1
 9 v M subspace generated by v is surjective, 

leading to the identification RP
n
=S

n
 /(v - ±v), and the quotient topology 

on RP
n
. 

Similarly, working with complex vector spaces, we obtain a quotient 

topology on the complex projective space 

CP
n
 := { 1-dimensional subspaces of C

n+1
 }=S

2n+1
 /(v  — 

zv), z E S
1
 

 

Generalizing, we can consider the Grassmann manifold 

Gk(R
n+fc

):= { k-dimensional subspaces of R
n+fc

 }. There is a surjective 

map 

Vk(R
n+fc

)={(v1,  . . . ,  v f c ) | v E R
n+fc

, vj's are orthonormal } ^ Gk(R
n+fc

) 

given by sending(v1, ..., vk)E Vk(R
n+fc

)to the k-dimensional subspace of 

R
n+fc

 spanned by the v^s. Hence the subspace topology on the Stiefel 

manifold Vk(R
n+fc

)C R
(n+fc)fc 

gives a quotient topology on the Grassmann 

manifold Gk(R
n+fc

)=Vk(R
n+fc

)/  —. The same construction works for the 

complex Grassmann manifold Gk(C
n+fc

). 
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As the examples below will show, sometimes a quotient space X/ — 

is homeomorphic to a topological space Z constructed in a different way. 

To establish the homeomorphism between X/ — and Z, we need to 

construct continuous maps 

f: X / --------- y Z g: Z M X/ — 

that are inverse to each other. The next Theorem shows that it is easy to 

check continuity of the map f, the map out of the quotient space. 

 

Theorem. The projection map p: X y X/ — is continuous and 

a map f: X/ — y Z to a topological space Z is continuous if 

and only if the composition f  op: X y Z is continuous .  

As we will observe in the next section, there are many situations 

where the continuity of the inverse map for a continuous bijection f is 

automatic. So in the examples below, and for the exercises in this 

section, we will defer checking the continuity of f
-1

 to that section. 

Notation. Let A be a subset of a topological space X. Define a 

equivalence relation ~ on X by x ~ y if x=y or x, y E A. We use the 

notation X /A for the quotient space X/~. 

Example. We claim that the quotient space [— 1, +1] /{ ±1 } is 

homeomorphic to  

S
1
 via the map f: [-1, +1] /{ ±1 } M S

1
 given by [t] M e

nit
. Geometrically  

speaking, the map f wraps the interval [-1, +1] once around the circle. It 

is  

easy to check that the map f is a bijection. 

To observe that f is continuous, consider the composition [-1, +1] [-1, 

+1] /{ ±1 } S
1
 C=R

2
, where p is the projection map and i the inclusion 

map. This composition sends t E [-1, +1] to e
nit

=(sin nt, cos nt)E R
2
.  

It is a continuous function, since its component functions sin nt and cos 

nt are continuous functions. The continuity of i o f o p implies the 

continuity of i o f, which implies the continuity of f. As mentioned 
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above, we'll postpone the proof of the continuity of the inverse map f
-1

 to 

the next section. homeomorphic to a subspace of R
3
. 

 

1.5  PROPERTIES OF TOPOLOGICAL   

SPACES  

In the previous subsection we described a number of examples of 

topological spaces X, Y that we claimed to be homeomorphic. We 

typically constructed a bijection f: X ^ Y and argued that f is continuous. 

However, we did not finish the proof that f is a homeomorphism, since 

we defered the argument that the inverse map f
-1

: Y ^ X is continuous. 

We note that not every continuous bijection is a homeomorphism. For 

example if X is a set, X$(resp. Xind) 

is the topological space given by equipping the set X with the 

discrete(resp. indiscrete)topology, then the identity map is a continuous 

bijection from X$ to Xind. However its inverse, the identity map Xind ^ 

X$ is not continuous if X contains at least two points. 

Fortunately, there are situations where the continuity of the inverse 

map is automatic as the following proposition shows. 

Proposition.  Let f: X ^ Y be a continuous bijection . Then f is 

a homeomorphism provided X is compact and Y is 

Hausdorff .  

The goal of this section is to define these notions, prove the 

proposition above, and to give a tools to recognize that a topological 

space is compact and /or Hausdorff.  

Hausdorff spaces  

Definition. Let X be a topological space, x E X, i = 1 ,  2 ,  . . .  a  

s e q u e n c e  i n  X  a n d x E X. Then x is the limit of the x's if for any 

open subset U C X containing x there is some N such that Xj E U for all 

i > N. 
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Caveat: If X is a topological space with the indiscrete topology, 

every point is the limit of every sequence. The limit is unique if the 

topological space has the following property: 

Definition. A topological space X is Hausdorff if for every x, y E X, 

x=y, there are disjoint open subsets U, V C X with x E U, y E V. 

Note: if X is a metric space, then the metric topology on X is 

Hausdorff(since for x=y and e=d(x, y)/2, the balls Be(x), Be(y)are 

disjoint open subsets). In particular, any subset of R
n
, equipped with the 

subspace topology, is Hausdorff. The notion of Cauchy sequences can be 

defined in metric spaces, but not in general for topological spaces(even 

when they are Hausdorff). 

 

Theorem. Let  X be a topological space and A a closed 

subspace of X. If xn  E A is a sequence with limit  x , then x E 

A. 

Proof. Let x /A. Then x is a point in the open subset X \ A and hence by 

the definition of limit, all but finitely many elements xn must belong to 

X \ A, contradicting our assumptions.  

Compact spaces  

Definition. An open cover of a topological space X is a collection of 

open subsets of X whose union is X. If for every open cover of X there is 

a finite sub collection which also covers X, then X is known compact. 

Some books(like Munkres' Topology)refer to open covers as open 

coverings, while newer books(and wikipedia) observem to prefer to 

above terminology, probably for the same reasons as me: to avoid 

confusions with covering spaces, a notion we'll introduce soon. 

Theorem. If f: X ^ Y is a continuous map and X is compact , 

then the image f(X)is compact .  

In particular, if X is compact, then any quotient space X/~ is 

compact, since the projection map X ^ X/~ is continuous with image 

X/~. 
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Proof. To show that f(X)is compact let that { Ua }, a E A is an open 

cover of the subspace f(X). Then each Ua is of the form Ua=Va if f(X)for 

some open subset Va E Y. Then { f
-1

(Va)}, a E A is an open cover of X. 

Since X is compact, there is a finite subset 

A' of A such that { f
-1

(K)}, a E A' is a cover of X. This implies that { Ua 

}, a E A' is a finite cover of f(X), and hence f(X)is compact. 

  

Theorem. 1. If  K is a closed subspace of a compact space X , 

then K is compact .  

If  K is compact subspace of a Hausdorff space X , then K is 

closed. 

Proof. Let that { Ua }, a E A is an open covering of K. Since the Ua's are 

open w.r.t. the subspace topology of K, there are open subsets Va of X 

such that Ua=K if K. Then the Va's together with the open subset X \ K 

form an open covering of X. The compactness of X implies that there is 

a finite subset A' C A such that the subsets Va for a E A', together with 

X \ K still cover X. It follows that Ua, a E A' is a finite cover of K, 

showing that K is compact. 

Corollary.  If f: X ^ Y is a continuous bijection with X 

compact and Y Hausdorff , then f is a homeomorphism. 

Proof. We need to show that the map g: Y ^ X inverse to f is continuous, 

i.e., that g
-1

(U)=f(U)is an open subset of Y for any open subset U of X. 

Equivalently(by passing to complements), it suffices to show that g
-

1
(C)=f(C)is a closed subset of Y for any closed subset C of C. 

Now the assumption that X is compact implies that the closed subset 

C C X is compact that Y is Hausdorff then implies by part of Theorem 

that f(C)is closed. 

Theorem. Let K be a compact subset  of  R
n
. Then K is bounded, 

meaning that  there is some r > 0 such that K is contained in the 

open ball Br(0):= { x E R
n
|d(x, 0)< r }. 
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Proof. The collection Br(0)if K, r E(0, ro), is an open cover of K. By 

compactness, K is covered by a finite number of these balls; if R is the 

maximum of the radii of these finitely many balls, this implies K C 

BR(0)as desired. 

Corollary.  If f: X ^ R is a continuous function on a compact 

space X, then f has a maximum and a minimum. 

Proof. K=f(X)is a compact subset of R. Hence K is bounded, and thus K 

has an infimum a := inf K E R and a supremum b := sup K E R. The 

infimum(resp. supremum)of K is the limit of a sequence of elements in 

K; since K is closed, the limit points a and b belong to K. In other words, 

there are elements xmin, xmax E X with f(xmin)=a < f(x)for all x E X and 

f(xmax)=b > f(x)for all x E X.spaces we are interested in, are in fact 

compact. Note that this is quite difficult just working from the definition 

of compactness: you need to ensure that every open cover has a finite 

subcover. That sounds like a lot of work... 

Fortunately, there is a very simple classical characterization of 

compact subspaces of Euclidean spaces: 

 

Theorem.(Heine-Borel Theorem)A subspace X C R
n
 is 

compact if  and only if X is closed and bounded . 

We note that we've already proved that if K C R
n
 is compact, then K 

is a closed subset of R
n
  and K is bounded 

There two important ingredients to the proof of the converse, namely 

the following two results: 

 

Theorem. A closed interval [a , b] is compact .  

Theorem. If Xi, ...,Xn are compact topological spaces ,  then 

their product  XiX- • -xXn is compact .  

The statement is true more generally for a product of infinitely many 

compact, the correct definition of the product topology for infinite 

products this result is known Tychonoff's Theorem,  
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Proof of the Heine-Borel Theorem. Let K C R
n
 be closed and bounded, 

say K C Br(0). We note that Br(0)is contained in the n-fold product 

P := [—r, r] x • • • x [—r, r] C R
n
 

which is compact. So K is a closed subset of P and hence compact 

Connected spaces  

Definition. A topological space X is connected if it can't be written as 

decomposed in the form X=U U V, where U, V are two non-empty 

disjoint open subsets of X. 

For example, if a, b, c, d are real numbers with a < b < c < d, 

consider the subspace X=(a, b)H(c, d)C R. The topological space X is 

not connected, since U=(a, b), V=(c, d)are open disjoint subsets of X 

whose union is X. This remains true if we replace the open intervals by 

closed intervals. The space X'=[a, b] H [c, d] is not connected, since it is 

the disjoint union of the subsets U'=[a, b], V'=[c, d]. We want to 

emphasize that while U' and V' are not open as subsets of R, they are 

open subsets of X', since they can be 

written as 

U'=(-ro, c)n X' V'=(b, ro)n X',  

showing that they are open subsets for the subspace 

topology of X
'
 C R. 

 

Theorem. Any interval I in  R(open, closed, half-open, 

bounded or not )is connected. 

Proof. Using proof by contradiction, Let us let that I has a decomposition 

I=U U V as the union of two non-empty disjoint open subsets. Pick 

points u E U and v E V, and Let us let u < v without loss of generality. 

Then 

[u, v]=U' U V' with U' := U n [u, v] V' := U n [u, v] is a decomposition of 

[u, v] as the disjoint union of non-empty disjoint open subsets U', V' of 

[u, v]. We claim that the supremum c := sup U' belongs to both, U' and 
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V', thus leading 

to the desired contradiction. Here is the argument. 

Assuming that c doesn't belong to U', for any e > 0, there must be some 

element of U' belonging to the interval(c  — e, c), allowing us to 

construct a sequence of elements u E U' converging to c. This implies 

c E U' since U' is a closed subspace of [u, v](its complement V' is 

open). 

By construction, every x E [u, v] with x > c=sup U' belongs to V'. So we 

can construct a sequence v E V' converging to c. Since V' is a closed 

subset of [u, v], we conclude c E V'. 

•   

Theorem.(Intermediate Value Theorem)Let X be a connected 

topological space and f : X ^ R a continuous map. If elements 

a, b E R belong to the image of f , then also any real number c 

between a and b belongs to the image of f. 

Proof. Let that c is not in the image of f. Then X=f
-1

(—ro,  c ) U f
-1

(c, 

ro)is a decomposion of X as a union of non-empty disjoint open subsets.  

There is another notion, closely related to the notion of connected 

topological space which might be easier to think of geometrically. 

 

Definition. A topological space X is path connected if for any points x, y 

E X there is a path connecting them. In other words, there is a 

continuous map 7: [a, b] ^ X from some interval to X with 7(a)=x, 

7(b)=y. 

Theorem. Any path connected topological  space is 

connected. 

Proof. Using proof by contradiction, Let us let that the topological space 

X is path connected, but not connected. So there is a decomposition 

X=U U V of X as the union of non-empty open subsets U, V C X. The 

assumption that X is path connected allows us to find a path 7: [a, b] ^ X 

with 7(a)E U and 7(b)E V. Then we obtain the decomposition [a, b]=f
-

1
(U)U f

-1
(V)of the interval [a, b] as the disjoint union of open subsets. 
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These are non-empty since a E 

f
-1

(U)and b E f
-1

(V). This implies that [a, b] is not connected, the desired 

contradiction. 

For typical topological spaces we will consider, the properties 

"connected" and "path connected" are equivalent. But here is an 

example known as the topologist's sine curve which is connected, but 

not path connected. It is the following subspace of R
2
: 

X={(x, sin -
1
)E R

2
|0 < x < 1 } U {(0, y)E R

2
| —1 < y < 1 } 

 

Check your Progress-1 

Discuss Topology,   

________________________________________________________ 

________________________________________________________ 

________________________________________________________ 

Discuss Topological spaces 

_______________________________________________________ 

________________________________________________________ 

________________________________________________________ 

 

1.6 ONE VARIABLE CALCULUS 

In this brief discussion of one variable calculus, we introduce the 

Riemann 

integral, and relate it to the derivative. We will define the Riemann 

integral 

of a bounded function over an interval I=[a, b] on the real line. For now,  

we let f is real valued. To start, we partition I into smaller intervals. 

A partition P of I is a finite collection of subintervals { Jk : 0 < k < N },  
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disjoint except for their endpoints , whose union is  I.  We can 

order the Jk  so that Jk=[xk,  %k+i], where 

xo < xi < • • • < xN < xN+1, x0=a, xN+1=b. 

We call the points xk  the endpoints of P. We set 

l(Jk)= xk +1   —  xk ,  maxsize(P)= max^ l(Jk) 

We then set 

IP(f)=J^sup f(x)l(Jk ), k 
Jk

 

Lp(
f )

=^ J 
f (x)l ( J

k
)
. 

J
k  k 

the definition of sup and  inf. We call Ip(f)and Lp(f)respectively the 

upper sum and lower sum of f, associated to the partition P. Note that 

Lp(f)< Ip(f). These quantities should approximate the Riemann integral 

of f, if the partition P is sufficiently "fine." 

To be more precise, if P and Q are two partitions of I,  we say P 

refines 

Q, and write P y Q, if P is formed by partitioning each interval in Q. 

Equivalently, P y Q if and only if all the endpoints of Q are also 

endpoints 

of P. It is easy to observe that any two partitions have a common 

refinement; 

just take the union of their endpoints, to form a new partition. Note also 

that refining a partition lowers the upper sum of f and raises its lower 

sum: 

P y Q  =^  I p(f)< I Q ( f ), and Ip(f)> Ic(f). 

Consequently, if Pj are any two partitions and Q is a common 

refinement,  

we have 

P(f)< I Q(f)< I Q(f)< Ip2(f). 

Now, whenever f : I ^ R is bounded, the following quantities are 

well 

defined: 

(1
.b

6) I(f
 )= f 1 p(

f ),  I(f)
=

su
p Lp(

f
 ^Pen(/)  pen(/)  
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where n(I)is the set of all partitions of I. We call Iff)the lower integral 

of f and I(f)its upper integral. Clearly Iff)< I(f). We then 

say that f is Riemann integrable provided I(f)=I(f), and in such a case,  

we set 

J  f(x)dx=J  f(x)dx=I(f )=Iff). 

We will denote the set of Riemann integrable functions on I by 

R(I). 

We derive some basic properties of the Riemann integral. 

 

Proposition  If f, g € R(I), then f + g € R(I), and 

J (f + g)dx=j  f dx + J  gdx.I ii 

Proof. If Jk is any subinterval of I, then 

sup(f + g)< sup f + sup g, and inf(f + g)> inf f + inf g,  

jk  Jk Jk 
Jk Jk Jk

 

so, for any partition P, we have Ip(f + g)< Ip(f)+ Ip(g). Also, using 

common refinements, we can simultaneously approximate I(f)and I(g)by 

Ip(f)and Ip(g), and ditto for I(f + g). Thus the characterization 

implies I(f + g)< I(f)+ I(g). A parallel  argument implies  

I(f + g)> I(f)+ I(g), and the proposition follows.  

Next, there is a fair supply of Riemann integrable functions. 

 

Proposition  If  f is  continuous on I , then f is  Riemann 

integrable.  

Proof. Any continuous function on a compact interval is bounded and 

uni- 

formly continuous. Let u(S)be a modulus of continuity for f, so 

\x - y\< 5 =^\f(x)- f(y)\ < u(S), u(S)^ 0 as 5 ^ 0. Then 

maxsize(P)< 5 =^ Ip(f) — Lp(f)< w(5)• l (I),  

which yields the proposition.  

We denote the set of continuous functions on I by C(I).  
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C(I)c R(I). 

The criterion on a partition guaranteeing that Ip(f)and I_p(f)are close 

to JI f dx when f is continuous. 

We produce an extension, giving a condition under which Ip(f)and I(f) 

are close, and Ip(f)and I(f)are close, given f bounded on I. Given a 

partition P0 of I, set minsize(P0)=min{ l(Jk): Jk  € P0  }.  

 

Theorem  Let P and Q be two partitions of I. Let 

maxsize(P)<  — minsize(Q). k 

Let \f \ < M on I. Then 

I
P

( f )
< 

I
 Q

( f )
+ ~T

l(I)
> 

Ip(f)> IQ(f)- -^HI).  

Proof. Let P1  denote the minimal common refinement of P and Q. Con- 

sider on the one hand those intervals in P that are contained in intervals 

in Q and on the other hand those intervals in P that are not contained 

in intervals in Q. Each interval of the first type is also an interval in Pi. 

Each interval of the second type gets partitioned, to yield two intervals in 

P1. Denote by Pi the collection of such divided intervals. The 

lengths of the intervals in P
1
 sum to < l(I)/k. It follows that 

\ I P (f)- I P - I (f)\  < E 2Ml(J)< 2M
l
k

)
, J p 

and similarly \Ip(f) — Ip1(f)\  < 2Ml(I)/k. Therefore 

IP(f)< I P I (f)+ ~^l(I), IP(f)> IPi(f) — ~^l(I). 

Since also Ip1(f)< IQ ( J )and Ip1(f)> I Q ( J ) 

The following consequence is sometimes known Darboux's Theorem. 

 

Theorem  Let Pv be a sequence of partitions of I into v intervals  

Jvk, 1 < k < v, such that maxsize(Pv) —> 0. 

If f : I ^ R is bounded, then(EE
1 4)  I

P V
( f )

^
I( f )and

 

LP„
( f )

^ 
I( f)

. Consequently,  

f € R(I)^ I(f)=lim E f(ivk)l(Jvk), is—Yoo 
LJ

 k=1 
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for arbitrary fvk € Jvk, in which case the limit is f dx. 

Proof. As before, let \f  \  < M. Pick e=1 /k > 0. Let Q be a partition 

such that 

I(f)< IQ(f)< I(f)+ e,   

I(f)> LQ(f)> I(f)- e.  

Now pick N such that 

v > N =^ maxsize Pv < e minsize Q. 

yields, for v > N,  

LPv(f)< LQ(f)+ 2Ml(I)e,  

LPv(f)> LQ(f)- 2Ml(I)e. 

Hence, for v > N,  

L(f)< LPv(f)< L(f)+ [2Ml(L)+ 1]e,  

L(f)> LPv(f)> L(f)- [2Ml(L)+ 1]e.f '(a)=0. 

pr 

Then there exists a' G Z  

 

1.7 THE DIFFERENTIAL CALCULUS OF  

FUNCTIONS OF SEVERAL 

VARIABLES 

The Linear Structure on Rm 

Rm as a Vector Space 

The concept of a vector space is already familiar to you from your study 

of algebra. 

If we introduce the operation of addition of elements X\=(x \,...,0^) 

and X2=(#2, • • • > XT)*n by the formula 

Xi +X2=(x } + x \,..., X™ +x™),  
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and multiplication of an element x=(x1, ..., xm)by a number A G R via 

the relation 

Ax=(Ax1, ..., \xm),  

then Rm becomes a vector space over the field of real numbers. Its points 

can 

now be known vectors. . 

The vectors 

d=(0, ..., 0, 1, 0, ..., 0)(i=1, ...,m)  

(where the 1 stands only in the ith place)form a maximal linearly 

independent set of vectors in this space, as a result of which it turns out 

to be an m-dimensional vector space. 

Any vector x G Rm can be expanded with respect to the basis, that is, 

represented in the form 

x=xxe\ H V xrnern  

When vectors are indexed, we shall write the index as a subscript, while 

denoting its coordinates, as we have been doing, by superscripts. This is 

convenient for many reasons can make the convention of writing 

expressions like briefly in the form taking the simultaneous presence of 

subscript and superscript with the same Letter to indicate summation 

with respect to that Letter over its range of variation. 

Check your Progress-2 

Discuss One variable calculus 

________________________________________________________ 

________________________________________________________ 

________________________________________________________ 

_______________________________________________________ 

Discuss The differential calculus of functions of several variables 
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________________________________________________________ 

________________________________________________________ 

1.8 LET US SUM UP 

In this unit we have discussed the definition and example of Topology, 

Topological spaces, Constructions with topological spaces, Properties of 

topological spaces, One variable calculus , The differential calculus 

of functions of several variables. 

1.9 KEYWORDS 

Topology: In mathematics, topology is concerned with the properties of 

a geometric object that are preserved under continuous deformations, 

such as stretching, twisting, crumpling and bending, but not tearing 

or gluing. 

Topological spaces:  A topological space (X, T ) is a set X together with a 

topology T on X. 

1.10 QUESTIONS FOR REVIEW 

Explain Topology, Topological spaces    

  

Explain One variable calculus  

The differential calculus of functions of several variables 

 

1.11 ANSWERS TO CHECK YOUR 

PROGRESS 

 

Topology, Topological spaces (answer for Check your Progress-1 

Q) 

One variable calculus                                                                     

The differential calculus of functions of several variables                                                                                                                             

https://en.wikipedia.org/wiki/Mathematics
https://en.wikipedia.org/wiki/Mathematical_object
https://en.wikipedia.org/wiki/Continuous_function
https://en.wikipedia.org/wiki/Deformation_theory
https://en.wikipedia.org/wiki/Stretch_factor
https://en.wikipedia.org/wiki/Twist_(mathematics)
https://en.wikipedia.org/wiki/Crumpling
https://en.wikipedia.org/wiki/Quotient_space_(topology)
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(answer for Check your Progress-2 

Q) 

1.12 REFERENCES 

 Analysis of Several Variables 

 Application of Several Variables 

 Function of Several Variables 

 Several Variables 

 Function of Variables 

 System of Equation 

 Function of Real Variables 

 Real Several Variables 

 Elementary Variables 

 Calculus of Several Variables 

 Advance Calculus of Several Variables 
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UNIT - 2: FUNCTIONS OF SEVERAL 

VARIABLES 

STRUCTURE 

2.0 Objectives 

2.1 Introduction 

2.2 Functions Of Several Variables  

2.3 The Space Of Linear Transformations From R
m 

To R
n

 
 

2.4 The Space Rm And Its Subsets Open And Closed Sets In Mm                                                                                      

2.5 Limits And Continuity Of Functions Of Several Variables                                                           

2.6  Continuity Of A Function Of Several Variables And  

         Properties Of Continuous Functions 

2.7 Let Us Sum Up 

2.8 Keywords 

2.9 Questions For Review 

2.10 Answers To Check Your Progress 

2.11 References 

2.0  OBJECTIVES 

After studying this unit, you should be able to: 

Learn, Understand about Functions Of Several Variables 

Learn, Understand about Space Of Linear Transformations From R
m 

To 

R
n

  

Learn, Understand about The Space Rm And Its Subsets Open And 

Closed Sets In Mm                                                                                       

Learn, Understand about Limits And Continuity Of Functions Of Several 

Variables        

Learn, Understand about Continuity Of A Function Of Several Variables 

And Properties Of Continuous Functions 
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2.1 INTRODUCTION 

In mathematics advanced calculus whose aim is to provide a firm logical 

foundation of analysis of calculus and a course in linear algebra treats 

analysis in one variable & analysis in several variables 

Functions Of Several Variables, The Space Of Linear Transformations 

From R
m 

To R
n

, The Space Rm And Its Subsets, Open And Closed Sets 

In Mm, Limits And Continuity Of Functions Of Several Variables, 

Continuity Of A Function Of Several Variables, And Properties Of 

Continuous Functions 

 

2.2 FUNCTIONS OF SEVERAL 

VARIABLES 

Up to now we have considered almost exclusively numerical-valued 

functions x \f(x)in which the number f(x)was determined by giving a 

single number x from the domain of definition of the function. 

However, many quantities of interest depend on not just one, but many 

factors, and if the quantity itself and each of the factors that determine it 

can be characterized by some number, then this dependence reduces to 

the fact that a value y= /(x1, ...,xn)of the quantity in question is made to 

correspond to an ordered set(x1, ..., xn)of numbers, each of which 

describes the state of the corresponding factor. The quantity lets this 

value when the factors determining this quantity are in these states. 

For example, the area of a rectangle is the product of the lengths of its 

sides. The volume of a given quantity of gas is computed by the formula 

V=R 

Where R is a constant, m is the mass, T is the absolute temperature, and 

p is the pressure of the gas. Thus the value of V depends on a variable 

ordered triple of numbers (m, T, p), or, as we say, V is a function of the 

three variables m, T, and p. 
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Our goal is to learn how to study functions of several variables just as we 

learned how to study functions of one variable. 

As in the case of functions of one variable, the study of functions of 

several numerical variables begins by describing their domains of 

definition. 

 

The Space Mm and the Most Important Classes of its Subsets 

The Set Mm and the Distance in it 

We make the convention that Mm denotes the set of ordered m-tuples 

(x1, ..., xm)of real numbers xlGl, (i=1, ..., m). 

Each such m-tuple will be denoted by a single Letter x=(x1, ...,xm) 

and, in accordance with convenient geometric terminology, will be 

known a point of Mm. The number x% in the set(x1, ...,xm)will be 

known the zth coordinate of the point x=(a:1, ..., xm). 

The geometric analogies can be extended by introducing a distance on 

Mm between the points x\=(x \,..., x™)and X2=(x2, ..., x™)according to 

the formula   

^(x\ - 4)2 .  

2=1 

The function 

 

d : Mm x Mm -)> R 

defined by the formula obviously has the following properties: 

d(xi, x2)> 0; 

(d(xi, x2)=0)(xi=x2); 

d(xux2)=d(x2, x 1); 

d(xi, x3)< d(xi, x2)+ d(x2, x3). 
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This last inequality(known, again because of geometric analogies, the 

triangle inequality)is a special case of Minkowski's inequality. 

A function defined on pairs of points { x \,x2)of a set X and possessing 

the properties is known a metric or distance on X. 

A set X together with a fixed metric on it is known a metric space. 

Thus we have turned Mm into a metric space by endowing it with the 

metric given by relation. 

The reader can get information on arbitrary metric spaces. Here we do 

not wish to become distracted from the particular metric space Mm that 

we need at the moment. 

Since the space Mm with metric will be our only metric space, forming 

our object of study, we have no need for the general definition of a 

metric space at the moment. It is given only to explain the term "space" 

used in relation to Mm and the term "metric" in relation to the function. 

It follows that for i e { 1, ..., m } 

\x\  — xl2\ < d(x \,x2)< y /m max \x\  — xl21,   

l<2<m 

that is, the distance between the points xi, x2 <= Mm is small if and only 

if the corresponding coordinates of these points are close together. 

It is clear that for m=1, the set M1 is the same as the set of real numbers, 

between whose points the distance is measured in the standard way by 

the absolute value of the difference of the numbers. 

2.3 THE SPACE OF LINEAR 

TRANSFORMATIONS FROM RM TO RN 

Linear transformations mapping R
m 

To R
n

 We can add such linear 

transformations in the usual way:(L1 +  L2)(x)= L1(x)+  L2(x). Similarly 

we can multiply such a linear transformation by a scalar. In this way, the 

set 
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L(R
n
, R

m
)= { linear transformations from R

m 
To R

n
 becomes a vector 

space. If we choose bases for R
n
 and R

m
, say the standard bases, then 

each element of L(R
n
, R

m
)has an m X n matrix with respect to these 

bases. 

Since there are mn entries in such a matrix, and they all can be chosen 

independently of each other, L(R
n
, R

m
)has dimension mn. A basis is the 

set of m X n matrices which are all zero except for a 1  in one entry. 

Second derivative 

Recall that if f : R
n
 ! R

m
 is differentiate at a point x 2 R

n
, then D f(x)is a 

linear transformation from R
m 

To R
n

. Hence, for each x, Df(x)2  L(R
m

, 

R
n
). From this we observe that Df is a function from R

n
 to L(R

n
, R

m
). 

We can then discuss D(Df) , or D
2
f, the second derivative of f. For 

each    x 2 R
n
, D2f  

(x)is a linear transformation from R
n
 to L(R

n
,R

m
). Hence, for any v 

2  R
n
, D

2
f(x)(v)2 L(R

n
, R

m
). Therefore, for any w 2 R

n
, D

2
f(x)(v)(w)2 

R
m

. 

Recall that R
n
 X R

n
= {(v, w)| v and w are in R

n
g . We can therefore 

consider D
2
f(x)as a linear transformation from R

n
 X R

n
 to R

m
. So instead 

of writing D2f  

(x)(v)(w), we write D
2
f(x)(v, w). 

This linear transformation from R
n
 to R

m
 is known "bilinear", 

because it is linear as a function of v for each fixed w, and also as a 

function of w for each fixed v. In other words,  

D
2
f(x)(av

1
 + ,dv

2
, yw

1
 +  hw

2
)= ayD

2
f(x)(v

1
, w

1
)+  ^yD

2
f(x)(v

2
, w

1
) 

+  ahD
2
f(x)(v

1
, w

2
)+  ^hD

2
f(x)(v

2
, w

2
) 

Now we will only consider the case m = 1 .  Thus,  

 

We wish to consider the nature of a general bilinear function L from R
n
 x 

R
n
 to R.  

 

f : R
n
 ! R 

F o r  e a c h  x, Df(x): R
n
 ! R Df 

For each x. D
2
f(x)Equivalently, D

2
f(x) 
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R
n
 ! L ( R

n
,  R )   

R
n
 x R

n
 ! R  

 

Let ei, ..., en be the standard basis vectors of R
n
. Then for each i and j, 

L(ej, ej) G R. Let L(ej, ej) = ajj. 

It will be simplest now to consider the case n= 2 .  Suppose that 

v=c1e1 +  c2e2, and w=d1e1 +  d2e2. The bilinearity implies that 

L(v, w)= L(c1e1 +  C2e2, d1e1 +  d2e2) 

=  C1d1 an +  C1d2a12 +  C2d1a21 +  

C2d2a22. 

It turns out that this equals an a12 \( d1 

( cl, C2)
\  a a I  i  d 

a21 a22 d2  

(Check by multiplying this out.)In this way, each L is associated with an 

n x n 

matrix A. In the case where L= D
2
f(x), it is shown in the text that 

f @ 
2
f 

A
= (@xi^xj(

x)
 

If you recall that for most functions, the order in which you take partial 

derivatives doesn't matter, you observe that under some assumptions on 

f, A is a symmetric matrix. 

All of the second partial derivatives of f are continuous. 

 

Example: Let f(x, y)= x
2
y+xy

3
. We will find the standard matrix for 

D
2
f( 1 ,  1 ) , and check that the limit formula for derivative works. For 

this function we have 

Df(x, y)= ( 2 xy +  y
3
, x

2
 +  3 xy

2
). 

 

By this we mean that 

( 2 xy +  y
3
)u 

(x
2
 +  3 xy

2
)v 



Notes 

40 

Also,  

2  y  2 x  + 3 y
2  

2x + 3y
2
 6 xy 

(Notice that= _@LL.)Recall that D
2
f(x, y):  R

n
 ! L(R

n
, R). Therefore, 

must be a map from R
n
 to R. We saw such a map before: Df(x) 

maps R
n
 to R. Any element of L(R

n
, R)can be written in the form 

x  —► bx 

where b is a 1  X n matrix; that is, a row vector. And any linear map L 

from R
n
 to fall n-dimensional row vectors } can be written as y ! y

T
A 

for some n X n matrix A. It is shown in the text that if L= D
2
f(x)partial 

derivatives of f, known the "Hessian". 

This leads us to the equation We now check this last formula using the 

definition of derivative. However, it is a bit complicated to describe just 

what is meant by the norm of a linear operator. It turns out to be 

equivalent to discuss the corresponding matrices. Once again the s u p  

norm will be convenient. We wish to check that(Notice that in the 

numerator we are dealing with row vectors.)We obtain 

||(2x y  + y
3

,  x
2  + 3xy

2
)- (3, 4)-(2(x -  1)+ 5(y -  1),  5(x -  1)+ 6(y 

-  1))^ 

It is sufficient to show that the ratio of the absolute value of each 

component of the vector in this expression to the norm in the 

denominator tends to zero as (x, y)! 

(1, 1)* 

The first component is y
3
 +  2 xy  — 2 x  — 5 y +  4 .  A little 

algebra is necessary: Since 

2 x= 2 (x  — 1 ) +  2  and 5 y= 5 (y  — 1 ) +  5 ,  we have 

y
3  +(2(x -  1)+ 2)y -  2x -  5(y -  1)- 5 + 4=y

3
 -  3y + 2 +(x -  1)(2y -  2) 

Further, it turns out that y
3
  — 3 y +  2 = (y  — 1 )

2
(y +  2 ) . Hence 

if(
x, 

y
)
=

( 1 , 1 )  

then the ratio of the absolute value of the first component of the 

numerator to the denominator is 
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|(y -  1)
2
(y + 2)+ 2(x - 1)(s - 1)

1
((

x
 ')

l!
jy"j '

2 |x
~" i

f
 l

x
 - 

1
 > |y -  

1
 

max f |x -  1 |,  |y -  1 | }fa-Vfeyl+%-"
2
 if  |x  -  1 | <  |y -  1 | '  

Both alternatives on the right tend to zero as as(x, y)!( 1 ,  1 ) . The 

second component can be handled similarly. It would be a nice algebra 

exercise to do this. 

Third derivative 

Notice the pattern: f :  R
n
 ! R, and for each x 2 R

n
(where f is 

differentiable),  

Df(x):  R
n
 ! R. In other words, Df(x)2 L(R

n
, R). The linear 

transformation 

Df( x)has the standard matrix( 1  X n)given by the gradient, which is in 

R
n
. Thus,  Df :  R

n
 ! R

n
. Df is not usually a linear transformation. 

As we explained, D
2
f(x)is a linear transformation from R

n
 X R

n
 to R, 

and this linear transformation has the standard n X n matrix given above. 

Therefore, D
2
f :  R

n
 ! L(R

n
 X R

n
, R). Hence, we expect that for each 

x,  

D
3
f(x):  R

n
 ! L(R

n
 X R

n
, R). This will involve the third derivatives dx.@ 

/.dxk. 

We will consider this further below. First, we have a review of Taylor 

series in one variable. 

Taylor series for f  :  R  !  R  

First recall the general formula for a Taylor series in one variable. 

Suppose that 

f :  R ! R, and all derivatives of f exist at every x 2 R. If x0 2 R, then the 

Taylor 

series for f at x0 is 

m_0^f<
n)

(xo)(x - Xo)
n
 .  

n! 

Here f <
n)

is the n-th derivative of f. We have the usual conventions that 

0 ! = 1  and f <
0 )

=f.  
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This series can converge for all x, or only for x in some interval 

containing x0. 

(It obviously converges if x= x0.)And if it converges for some x= x0, it 

might not converge to f(x). Examples of these possibilities will be given 

in class. 

Definition If the series converges to f ( x ) in some neighborhood of 

x0 ,  then f is known "analytic" at x0 .  

Perhaps of even more importance is using a finite sum of the terms in 

the Taylor series to approximate f on some interval containing x0. This 

can sometimes be done even if f is not analytic at x0, perhaps because 

not all of the derivatives of f at x0 are defined. The theorem which allows 

us to give such approximations is known Taylor's theorem. To state 

Taylor's theorem we first need a definition. 

Definition Suppose that f :  I C  R !  R, where I is an open interval 

containing a point x0. Suppose that r is a nonnegative integer. We say 

that f is of class C
r
 on I if the first r derivatives, f ,  f

0
, f

0 0
, ..., f <

r )
exist 

and are continuous on I.  

Theorem  Suppose that f :  I C R ! R where I is an open interval 

containing a point x0 ,  and f is of class C
r
 on I.  Suppose that x and y 

are in I. Then there is a c between x and y such that 

f (
y

)
-

f ( x)
= s n=\ n

f
 <

n) ( x) (
y -

x) n
 +  r, 

f
 <

r) ( c ) (
y -

x) r
 

If r= 1 , then this is the mean value theorem. 

As an example, Let f(x)= |x|
5
=

2
, and consider f( 2 )  —f( — 1 ) . Notice 

that f
0
( 0 ) = f

00
( 0 ) = 0 ,  but f

000
( 0 ) doesn't exist. Also, f(x)= ( —x)

5
=

2
 if 

x < 0 .  We wish to find c 2( — 1 ,  2 ) such that 
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f(2)- f(-1)=f (-1)(2 -(-1)) + 1 f
0 0

(c)(2 -(-1))2
 

25=2 - 1=2(-1)(3)+ - f
0 0

(c)(9).  

If c > 0 ,  then f"(c)=||c
1 /2

, while if d= —c, then f"(d)= (—|)(—|)( —d)
1 

/2
= f"(c), so f" is an even function. Therefore we can let c > 0 ,  and we 

want 

o5 /2 13 9 53 1
 

25 /2 + ---- = ------ c 2,  

2 2 22 ' 

or 

r  

8
( n 5  

/ 2  13 

\ f c  =  ---  25 /2 +-------  

V
 135 V 2 

Since we letd that c > 0 ,  we have to check that c < 2 .  That is easily 

done. 

P  <  —(8 + 7)=T 

Taylor's theorem of order 2 and quadratic forms. 

As pointed out earlier, the mean value theorem is a special case of 

Taylor's Theorem. 

if f is differentiable at every x, then for any xo and x there is a c between 

xo and x such that 

f(x)= f(xo)+  Df(c)(x - xo). 

Recall that Df(c)is a row vector, (the gradient). 

 

Extending by one more term 

f(x)= f(xo)+  Df(xo)(x - xo)+  2 D
2
f(c)(x - xo, x - xo).  

We need to explain the last term. From the theory above, we observe that 

if we write 

x  — xo as a column vector, then the last term is of the form 
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(x  — xo)
T
 A(x  — xo)  

and A is the n X n matrix . Writing this out, we have the expression 

D
2
f(c)(x - xo, x - xo)= ((x - xo)1,(x - xo)2,  • • •,  (x -  xo)n) A 

Let's look again at n= 2 .  Let  

x
 -  

x
»=( v )  

for scalars u and v. Then the expression in becomes 

a n u  + a1 2uv + a2 1uv + a2 2v .  

But A is symmetric, so we get 

a1 1u
2
 + 2a1 2  uv + a2 2v

2
.  

Such an expression is known a "quadratic form". In the 

n dimensional case with(x  — x0) = u, we get 

a n u 1  + a22u2 + • • • + a n n u
2

n  + 2a12u1u2                     + 2a13 

u1u3 + • • • + 2a(„_1)nun_1u„ ,   

which is again known a quadratic form. One of the chief 

questions one asks about a quadratic form is whether it 

is positive whenever u= 0 .  In that case it is known a 

"positive definite" quadratic form. One major reason 

that question is important is its application in the next 

section of the text to maxima and minima of functions 

f :  R
n
 - R. 

2.4 THE SPACE RM AND ITS SUBSETS 

OPEN AND CLOSED SETS IN MM 

 

Definition. For 8 > 0 the set 

B(a; 8)={ x <= Mm|d(a, x)< 8 } 
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is known the ball with center a <= Mm of radius 6 or the 8-neighborhood 

of the point a <= Mm. 

 

Definition. A set G C Mm is open in Mm if for every point x <= G there 

is a ball B(x; 8)such that B(x\ 8)C G. 

Example. Mm is an open set in Mm. 

Example. The empty set 0 contains no points at all and hence can be 

regarded as satisfying Definition 2, that is, 0 is an open set in Mm. 

Example. A ball F(a;r)is an open set in Mm. Indeed, if x <= B(a;r), that 

is, d(a, x)< r, then for 0 < 8 < r  — d(a, x), we have B(x\ 8)C B(a; r), 

since 

(<= <= B(x;8)) =>(d(x, <=)< 8)=> 

=>(d(a, <=)< d(a, x)+ d(x, <=)< d(a, x)+ r  — d(a, x)=r). 

 

Example.  A set G={ x <= Mm| d(a, x)> r }, that is, the set of points 

whose distance from a fixed point a <= Mm is larger than r, is open. This 

fact is easy to verify using the triangle inequality for the metric. 

Definition. The set F C Mm is closed in Mm if its complement G=Mm\F 

is open in Mm. 

Example. The set B{ a\r)={ x <= Mm| d(a, x)< r }, r > 0, that is, the set 

of points whose distance from a fixed point a <= Mm is at most r, is 

closed, as follows from Definition. The set B(a\r)is known the closed 

ball with center a of radius r. 

Proposition The union(J Ga of the sets of any system { Ga, a <= A } 

ot<=A 

of open sets in Mm is an open set in Mm. 

n 

The intersection p| Gi of a finite number of open sets in Mm is an 
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2=1 

open set in Mm. 

The intersection p| Fa of the sets of any system { Fq,, a <= A } of 

aeA 

closed sets Fa in Mm is a closed set in Mm. 

n 

The union(J Fi of a finite number of closed sets in Mm is a closed 

2=1 

set in Mm. 

Proof. If x e(J Ga, then there exists ao <= A such that x <= Gao, and 

ot<=A consequently there is a ^-neighborhood B(x\ 8)of x such that B(x\ 

8)C Gao.  

But then B(x\ 8)C(J G^. 

a€A 

n 

Let x <= P| G{ . Then x <= G*, (i=1, ..., n). Let <5i, ..., 8n be positive 

i= 1 

numbers such that B{ x\8i)C G*, (i=1, ..., n). Setting <5=min{ 5i, • • 

•>^n },  

n 

we obviously find that 8 > 0 and B(x\ 8)C H 

2=1 

Let us show that the set G f f] Faj complementary to f] Fa in Mm 

' oteA 

is an open set in Mm. 
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Indeed,  

c( n f«)=u(cp<«)=u - 

acEA acEA a€;A 

where the sets Ga=CFa are open in Mm. Part a')now follows from a),  

b')Similarly, from b)we obtain 

n n n 

c(u^=n(^)=n^. a 

2=1 2=1 2=1 

 

Example. The set 5(a; r)={ x <= Mm| d(a, x)=r }, r > 0, is known the 

sphere of radius r with center a <= Mm. The complement of S{ a\ r)in 

Mm,  is the union of open sets. Hence by the proposition just 

proved it is open, and the sphere S{ a\r)is closed in Rm. 

Definition. An open set in Mm containing a given point is known a 

neighborhood of that point in Mm. 

In particular, the ^-neighborhood of a point is a neighborhood of it. 

 

Definition. In relation to a set E c Mm a point x <= Mm is 

an interior point if some neighborhood of it is contained in E\ 

an exterior point if it is an interior point of the complement of E in Mm; 

a boundary point if it is neither an interior point nor an exterior point. 

It follows from this definition that the characteristic property of a 

boundary point of a set is that every neighborhood of it contains both 

points of the set and points not in the set. 

Example. The sphere 5(a;r), r > 0 is the set of boundary points of both 

the open ball B(a\r)and the closed ball B{ a\r). 

Example. A point a <= Mm is a boundary point of the set Mm \ a, which 

has no exterior points. 



Notes 

48 

Example. All points of the sphere 5(a;r)are boundary points of it; re- 

garded as a subset of Mm, the sphere S(a;r)has no interior points. 

 

Definition. A point a E Mm is a limit point of the set E C Mm if for any 

neighborhood 0(a)of a the intersection E D 0(a)is an infinite set. 

 

Definition. The union of a set E and all its limit points in Rm is the 

closure of E in Mm. 

The closure of the set E is usually denoted E. 

Example. The set B(a\r)=B(a\r)U S(a\r)is the set of limit points of 

the open ball B(a\r)\  that is why H(a;r), in contrast to B(a\r), is known a 

closed ball. 

 

Example. S(a\r)=S(a;r). 

Proposition.(F is closed in Mm)<=>(F=F in Mm). 

In other words, F is closed in Mm if and only if it contains all its limit 

points. 

Proof. Let F be closed in Mm, x E Mm, and x <= F. Then the open set 

G=Mm \F is a neighborhood of x that contains no points of F. Thus we 

have shown that if x <= F, then x is not a limit point of F. 

Let F=F. We shall verify that the set G=Mm \F is open in Mm. If 

x E G, then x <= F, and therefore x is not a limit point of F. Hence there 

is a neighborhood of x containing only a finite number of points xi, ..., xn 

of F. 

Since x <= F, one can construct, for example, balls about x, Oi(ar), ..., 

On(x) 

n 

such that Xi <= Oi(x). Then 0(x)=p| Oi(x)is an open neighborhood of x 
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2=1 

containing no points of F at all, that is, 0(x)C Mm \ F and hence the set 

Mm \ F=Mm \F is open. Therefore F is closed in Mm. □ 

 

Compact Sets in Mm 

 

Definition. A set K C Mm is compact if from every covering of K by sets 

that are open in Mm one can extract a finite covering. 

Example. A closed interval [a, b] C M1 is compact by the finite covering 

Theorem(Heine-Borel theorem). 

Example  A generalization to Mm of the concept of a closed interval is 

the set 

I={ x e Mm| a1 < x% < bl, i=1, ..., m }, 

which is known an m-dimensional interval, or an m-dimensional block or 

an m-dimensional parallelepiped. 

We shall show that I is compact in Mm. 

Proof. Let that from some open covering of I one cannot extract a finite 

covering. Bisecting each of the coordinate closed intervals P={ x1 E M : 

a% < 

x1 < F }, (i=1, ...,m), we break the interval I into 2m intervals, at least 

one of which does not admit a covering by a finite number of sets from 

the open system we started with. We proceed with this interval exactly as 

with the original interval. Continuing this division process, we obtain a 

sequence of nested intervals I=I\ D I2 ID • • • ID In ID • • •, none of 

which admits a finite covering. If In={ x E Mm| a%n < x1 < bln, i, ...,m 

}, then for each i E { 1, ..., m } the coordinate closed intervals ai< xi < 

b\(n =1, 2, ...) 

form, by construction, a system of nested closed intervals whose lengths 

tend to zero. By finding the point <=z E [«n?^n] common to all of these 

intervals for each i E { 1, ..., m }, we obtain a point <==(<=x, ..., 
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<=m)belonging to all the intervals I=Ji, J2, ...,  /n,  Since <= E  /, there 

is an open set G in the system of covering sets such that <= E G. Then 

for some 6 > 0 we also have B(<=;<5)C G. But by construction and the 

relation there exists N such that In C B(<=; S)C G for n > N. We have 

now reached a contradiction with the fact that the intervals In do not 

admit a finite covering by sets of the given system.  

 

Proposition. If K is a compact set in Mm, then K is closed in Mm; 

any closed subset of Mm contained in K is itself compact. 

Proof. We shall show that any point a E Mm that is a limit point of 

K must belong to K. Suppose a <= K. For each point x <= K we  

construct a neighborhood G(x)such that a has a neighborhood disjoint 

from 

G(x). The set(G(x)}, x E K, consisting of all such neighborhoods forms 

an open covering of the compact set if, from which we can select a finite 

covering G(xi), ..., G(xn). If now Oi(a)is a neigborhood of a such that n 

G(xi)fl Oi(a)=0, then the set 0(a) — f)Oi(a)is also a neighborhood of 

i=1 

a, and obviously K fl 0(a)=0. Thus a cannot be a limit point of K. 

Suppose F is a closed subset of Mm and F C K. Let { Ga }, ol E A, be 

a covering of F by sets that are open in Mm. Adjoining to this collection 

the 

open set G=Mm \ F, we obtain an open covering of Mm, and in particular 

an open covering of if, from which we select a finite covering of if. This 

finite covering of if will also cover the set F. Observing that G fl F=0, 

one can say that if G belongs to this finite covering, we will still have a 

finite covering of F by sets of the original system { Gq, }, a E A, if we 

remove G.  

 

Definition. The diameter of a set E C Mm is the quantity 
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d(E):= sup d(xi, X2). 

xi,X2 <=E 

 

Definition. A set E C Mm is bounded if its diameter is finite. 

 

Proposition. If K is a compact set in Mm, then K is a bounded subset of 

Mm. 

Proof Take an arbitrary point a <= Mm and consider the sequence of 

open balls(7?(a;n)}, (n=1, 2, ..., ). They form an open covering of Mm 

and consequently also of K. If K were not bounded, it would be 

impossible to select a finite covering of K from this sequence.  

 

Proposition. The set K C Mm is compact if and only if K is closed and 

bounded in Mm. 

Proof The necessity of these conditions . 

Let us verify that the conditions are sufficient. Since K is a bounded 

set, there exists an m-dimensional interval I containing K.  

 

Example. I is compact in Mm. But if AT is a closed set contained in the 

compact set 7, then it is itself compact.  

The distance d(E \,E2)between the sets E \,E2 C Rm is the quantity 

d(Ei, E2):= inf d(xi, x2). 

xiEEi, X2 G-E /2 

Give an example of closed sets E\ and E2 in Rm having no points in 

common for which d(Ei, E2)=0. 

Show that the closure E in Rm of any set E C Rm is a closed set in Rm; 

the set dE of boundary points of any set E C Rm is a closed set; 
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if G is an open set in Rm and F is closed in Rm, then G\F is open in Rm. 

Show that if K\ D K2 D • • • D Kn D • • • is a sequence of nested 

nonempty 

00 

compact sets, then p| Ki 7^ 0. 

i=1 

In the space Rk a two-dimensional sphere S2 and a circle S1 are situated 

so that the distance from any point of the sphere to any point of the circle 

is the same. 

Is this possible? 

Consider problem for spheres 5m, Sn of arbitrary dimension in Rk. 

Under what relation on m, n, and k is this situation possible 

2.5 LIMITS AND CONTINUITY OF 

FUNCTIONS OF SEVERAL VARIABLES 

 

The Limit of a Function 

In the operation of passing to the limit for a 

real-valued function /: X  —)> R defined on a set in which a base B was 

fixed. 

In the next few sections we shall be considering functions /: X  —)> Rn 

defined on subsets of Rm with values in R=R1 or more generally in Rn,  

n G N. We shall now make a number of additions to the theory of limits 

connected with the specifics of this class of functions. 

However, we begin with the basic general definition. 

 

Definition. A point A e Rn is the limit of the mapping f : X  —)> Rn 

over a base B in X if for every neighborhood V(A)of the point there 
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exists an element B e B of the base whose image f(B)is contained in 

V(A). 

In brief,  

(lim f(x)=A):=(W(A)3B € B(f(B)c V{ A))). 

We observe that the definition of the limit of a function /: X  —»> Rn is 

exactly 

the same as the definition of the limit of a function f : X R if we keep in 

mind what a neighborhood V(A)of a point A <= Rn is for every n G N. 

 

Definition . A mapping /: X  —)> Rn is bounded if the set f(X)C Rn is 

bounded in Rn. 

 

Definition. Let B be a base in A. A mapping f : X Rn is ultimately 

bounded over the base B if there exists an element B of B on which /is 

bounded. Taking these definitions into account and using the same 

reasoning that one can verify without difficulty that 

a function f : X Rn can have at most one limit over a given base B in 

X; 

a function f : X Rn having a limit over a base B is ultimately bounded 

over that base. 

Definition can be rewritten in another form making explicit use of the 

metric in Rn 

 

 

Definition 

(lim /(x)=A € Rn):=(Ve > 0 3B e B Vx € B(d(f(x), A)< e)) 

Or 
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Definition 

(lim /(a:)=ietnj :=(lim(d(f(x), A)=o). 

The specific property of a mapping /: X  —>> Mn is that, since a point 

y E Mn is an ordered n-tuple(y1, ..., yn)of real numbers, defining a 

function 

/: X  —)> Mn is equivalent to defining n real-valued functions f% : X  —

)> M 

(z=1, ..., n), where  /*(x)=yi(i=1, ..., n). 

If A=(A1, ..., An)and y=(y1, ..., yn), we have the inequalities 

|yl - Al\ < d(y, A)< s /n max |y* - A%\,  

1 <i<n 

from which one can observe that 

lim /(x)=A<& lim /1(a;)=A%(i=l, ..., n),   

that is, convergence in Mn is coordinatewise. 

Now Let X=N be the set of natural numbers and B the base k oo,  

k e N, in X. A function /: N  —)> Mn in this case is a sequence { ? /& }, 

k e N,  

of points of Mn. 

 

Definition. A sequence { yk }, k e N, of points G Mn is fundamental(a 

Cauchy sequence)if for every e > 0 there exists a number N G N such 

that 

d(yk^yk2)< <= for all kuk2> N. 

One can conclude from the inequalities that a sequence of points 

Vk  —(vli • • •»Vk)C Mn is a Cauchy sequence if and only if each 

sequence of coordinates having the same labels { ylk }, k G N, i=1, ..., n, 

is a Cauchy sequence. 



Notes 

55 

Taking account of relation and the Cauchy criterion for numerical 

sequences, one can now assert that a sequence of points Mn converges if 

and only if it is a Cauchy sequence. 

In other words, the Cauchy criterion is also valid in Mn. 

Later on we shall call metric spaces in which every Cauchy sequence has 

a limit compLete metric spaces. Thus we have now established that Mn 

is a compLete metric space for every n G N. 

 

Definition. The oscillation of a function /: X  —>> Mn on a set E C X is 

the quantity 

w( /;E):= d(f(E)), 

where d(f(E)) is the diameter of f(E). 

As one can observe, this is a direct generalization of the definition of the 

oscillation of a real-valued function, which Definition becomes            

when n=1. 

The validity of the following Cauchy criterion for the existence of a limit 

for functions /: X  —)> Mn with values in Mn results from the 

completeness of Mn.  

 

Theorem. Let X be a set and B a base in X. A function f : X  —)> Mn 

has a limit over the base B if and only if for every e > 0 there exists an 

element B <= B of the base on which the oscillation of the function is 

less than e. 

Thus,  

lim f(x)We >03 BeB(w( /;B)< s). 

This is a verbatim repetition of the proof of the Cauchy 

criterion for numerical functions, except for one minor change: \f(xi) — 

f(x2)| must be replaced throughout by d(f(x\), f(x2)). 
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One can also verify another way, regarding the Cauchy criterion as 

known for real-valued functions and using relations. 

The important theorem on the limit of a composite function also remains 

valid for functions with values in Mn. 

 

Theorem. Let Y be a set, By a base in Y, and g : Y  —)> Mn a mapping 

having a limit over the base By. 

Let X be a set, Bx a base in X, and f : X Y a mapping of X into 

Y such that for each By <= By there exists Bx € Bx such that the image 

f(Bx)is contained in By. 

Under these conditions the composition g o f : X  —)> Mn of the 

mappings f and g is defined and has a limit over the base Bx, and 

lim(g o f)(x)=lim g(y). 

ISx Oy 

The proof can be carried out either by repeating the replacing M by Mn, 

or by invoking that theorem and using relation  

Up to now we have considered functions /: X  —>> Mn with values in 

Mn, without specifying their domains of definition X in any way. From 

now on we shall primarily be interested in the case when X is a subset of 

Mm. 

As before, we make the following conventions. 

U(a)is a neighborhood of the point a <= Mm; 

o o 

U(a)is a deleted neighborhood of a <= Mm, that is, U{ a):= U{ a)\ a; 

Ue(cl)is a neighborhood of a in the set E C Mm, that is, Ue(cl):= 

EnU(a); 

o 00 

Ue(o)is a deLeted neighborhood of a in E, that is, Ue(o)'-= E D U(a)',  
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x  —)> a is the base of deLeted neighborhoods of a in Mm; 

x  —)> 00 is the base of neighborhoods of infinity, that is, the base 

consisting of the sets Mm \ B(a; r); 

x  —)> a, x <= E or(E 3 x  —)> a)is the base of deLeted neighborhoods 

of a in E if a is a limit point of E; 

x 00, x e E or(E 3 x 00)is the base of neighborhoods of infinity 

in E consisting of the sets E\B(a;r), if E is an unbounded set. 

In accordance with these definitions, one can, for example, give the 

following specific form of the limit of a function when speaking 

of a function /: E  —)> Rn mapping a set E C Rm into Rn: 

( lim f(x)=:=(Ve > 0 3 Ue(o)Vx € Ue{ o)(d(f(x), A)< e)) . 

\ EBx—hi  / 

The same thing can be written another way: 

( lim f(x)=a):= 

V EBx—ta)) 

=(Vs > 0 36 > 0 Vx G E(0 < d(x, a)< 6 => d(f(x), A)< e)) . 

Here it is understood that the distances d(x, a)and d(f(x), A)are measured 

in the spaces(Mm and Mn)in which these points lie. 

Finally,  

( lim f(x)=A):=(Ve > 03H(a;r)Vx G Mm \B(a;r)(d(f(x), A)< e). 

Let us also agree to say that, in the case of a mapping /: X  —)> Mn, the 

phrase " /(x) —)> oo in the base means that for any ball B(A\r)C En 

there exists B e B of the base B such that f(B)Cln\ B(A\ r). 

 

Example. Let x i-)» 7rz(x)be the mapping n7, : Rm R assigning to each 

x=(x1, ..., <=m)in Rm its zth coordinate xl. Thus 

-Kl(x)=. 
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If a=(a1, ..., am), then obviously 

7rz(x)a1 as x a . 

The function x i->> 7rz(x)does not tend to any finite value nor to infinity 

as x oo if m > 1. 

On the other hand,  

m 

f(x)=J2(7riw)oo as x  —)> oo . 

2=1 

One should not think that the limit of a function of several variables can 

be found by computing successively the limits with respect to each of its 

coordinates. The following examples show why this is not the case. 

Example Let the function /: R2  —)> R be defined at the point(x, y)G R2 

as follows: 

if*2 + rV0,  

f(x, y)=i 

[ 0, if x2 + y2=0 . 

Then  /(0, y)=f(x, 0)=0, while f(x, x)=\ for x ^ 0. 

Hence this function has no limit as(x, y)(0, 0). 

On the other hand,  

lim(lim f(x, y))=lim(0)=0, 

y^0lx->0M 'y)) 0V ' ' 

lim(lim f(x, y))=lim(0)=0 . 

x_>0 v y_>0J v 'yj)x—>o y 

Example. For the function 

grg.ifsa + yVo,  

. x2+y 
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 /(®, y). 

0, if x2 + y2=0, 

we have 

lim(lim f(x, y))=lim(^ )=1, 

x^0ly^0M 'y)) x^0\x2)2 

lim(lim f(x, y))=lim( —=- 

oVx->(TV ' y)) 2 /—>0 V y2) 

 

Example  For the function 

x + ysin^, if x ^ 0, 

f(x, y)" 

0, if x=0, 

we have 

lim f(x, y)=0, 

(*, j/)->(0, 0) 

lim„(lini f(x, y)) = 

x—>0 y—> 0 

yet at the same time the iterated limit 

lim(lim f(x, y)) 

y->ovx-xr v yjJ 

does not exist at all. 

 

Example The function 

. _ >if x2 + y2 ^0 >  

f(x, y)=_ 

0, if x2 + y2=0, 
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has a limit of zero upon approach to the origin along any ray                 

x=at, y=fit. 

At the same time, the function equals \ at any point of the form(a, a2),  

where a ^ 0, and so the function has no limit as(x, y)(0, 0). 

 

2.6 CONTINUITY OF A FUNCTION OF 

SEVERAL VARIABLES AND 

PROPERTIES OF CONTINUOUS 

FUNCTIONS 

 

Let E be a subset of Mm and /: E  —>> Mn a function defined on E with 

values in Mn. 

 

Definition. The function /: E  —)> Mn is continuous at a E E if for every 

neighborhood V of the value f(a)that the function lets at a, there 

exists a neighborhood Ue(o)of a in E whose image f(ue(a)) is contained 

i nV{ f(a)). 

Thus 

(/: E  —)> Mn is continuous at a e E):= 

=(W( /(a)) 3UE(a)(f(UE(a)) C V(f(a)))) . 

We observe that has the same form as Definition for continuity of a real-

valued function, which we are familiar with from. As was the 

case there, we can give the following alternate expression for this 

definition: 

(/: E  —)> Mn is continuous at a G E):= 

=(ye > 0 35 > 0 Vx e E(d(x, a)< S => d(f(x), f(a)) < <=)), 

or, if a is a limit point of E,  

(/: E  —)> Mn is continuous at a G E):=(lim  /(x)= /(a)) . 
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EBx—hi 

As noted, the concept of continuity is of interest precisely in 

connection with a point a G E that is a limit point of the set E on which 

the function /is defined. 

It follows from Definition and relation that the mapping /: E  —)> 

Mn defined by the relation 

(x1, ...,xm)=xt-Uy=(y\..., i /n)=is continuous at a point if and only if each 

of the functions y% =,..., xm)is continuous at that point. 

In particular, we recall that we defined a path in Mn to be a mapping /: 

I  —)> Mn of an interval /Cl defined by continuous functions  /1(x), ...,  

/n(x) 

in the form 

x^y= { yi, ..., yn)={ f1{ x), ..., fn{ x)) . 

Thus we can now say that a path in Mn is a continuous mapping of an 

interval I C M of the real line into Mn. 

By analogy with the definition of oscillation of a real-valued function at 

a point, we introduce the concept of oscillation at a point for a function 

with values in Mn. 

Let E be a subset of Mm, a € E, and E^(a; r)=E D E(a; r). 

 

Definition. The oscillation of the function f : E  —>> Rn at the point a G 

E is the quantity 

w( /;a):= lim w( /; BE(a;r)) . 

i—>-+0 v ' 

From Definition of continuity of a function, taking account of the    

properties of a limit and the Cauchy criterion, we obtain a set of 

frequently used local properties of continuous functions. We now list 

them. 

Check your Progress-1 
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Discuss Functions Of Several Variables 

________________________________________________________ 

________________________________________________________ 

________________________________________________________ 

_______________________________________________________ 

Discuss Limits And Continuity of functions of several variables 

________________________________________________________ 

________________________________________________________ 

 

2.7 LET US SUM UP 

In this unit we have discussed the definition and example of Functions 

Of Several Variables, The Space Of Linear Transformations From To 

R
m

 To R
n

 
 

The Space Rm And Its Subsets, Open And Closed Sets In Mm, Limits 

And Continuity Of Functions Of Several Variables, Continuity Of A 

Function Of Several Variables, And Properties Of Continuous Functions 

 

2.8 KEYWORDS 

Functions Of Several Variables: Here numerical-valued functions x 

\f(x)in which the number f(x)was determined by giving a single number 

x from the domain of definition of the function. 

The Space Of Linear Transformations From To R
m

 To R
n

….. Linear 

transformations mapping R
m To R

n
 We can add such linear 

transformations in the usual way:(L1 +  L2)(x)= L1(x)+  L2(x) 

The Space Rm And Its Subsets: Continuity Of A Function Of Several 

Variables And Properties Of Continuous Functions 
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Open And Closed Sets In Mm  For 8 > 0 the set B(a; 8)={ x <= Mm|d(a, 

x)< 8 } is known the ball with center a <= Mm of radius 6 or the 8-

neighborhood of the point a <= Mm. 

Limits And Continuity Of Functions Of Several Variables: The Limit of 

a Function In the operation of passing to the limit for a 

real-valued function /: X  —)> R defined on a set in which a base B was 

fixed 

Continuity Of A Function Of Several Variables And Properties Of 

Continuous Functions: Let E be a subset of Mm and /: E  —>> Mn a 

function defined on E with values in Mn. 

2.9 QUESTIONS FOR REVIEW 

Explain Functions Of Several Variables 

Explain Limits And Continuity Of Functions Of Several Variables 

2.10 ANSWERS TO CHECK YOUR 

PROGRESS 

 

Functions Of Several Variables (answer for Check your Progress-1 

Q) 

 

Limits And Continuity Of Functions Of Several Variables 

     (answer for Check your Progress-1 

Q) 

2.11 REFERENCES 

 System of Equation 

 Function of Real Variables 

 Calculus of Several Variables 

 Advance Calculus of Several Variables
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UNIT - 3: LOCAL PROPERTIES OF 

CONTINUOUS FUNCTIONS 

STRUCTURE 

3.0 Objectives 

3.1 Introduction 

3.2 Local Properties Of Continuous Functions 

3.3 Linear Transformations L : Rm  —> R™ 

3.4 The Norm In Rm 

3.5 The Euclidean Structure On Rm 

3.6 The Differential Of A Function Of Several Variables 

3.7 The Differential And Partial Derivatives Of A Real-Valued Function 

3.8 Coordinate Representation Of Differential Of A Mapping Jacobi 

Matrix 

3.9 Continuity, Partial Derivatives & Differentiability of Function at A 

Point 

3.10 Basic Laws of Differentiation Linearity of Operation of 

Differentiation 

3.11 Differentiation of A Composition of Mappings (Chain Rule) 

The Main Theorem 

3.12 Differential & Partial Derivatives of A Composite Real Valued 

Function  

3.13 Let Us Sum Up 

3.14 Keywords 

3.15 Questions For Review 

3.16 Answers To Check Your Progress 
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3.17 References 

3.0 OBJECTIVES 

After studying this unit, you should be able to: 

Local Properties Of Continuous Functions 

Linear Transformations L : Rm  —> R™ 

The Norm In Rm 

The Euclidean Structure On Rm 

The Differential Of A Function Of Several Variables 

The Differential And Partial Derivatives Of A Real-Valued Function 

Coordinate Representation Of The Differential Of A 

Mapping. The Jacobi Matrix 

Continuity, Partial Derivatives And Differentiability Of A Function At A 

Point 

The Basic Laws Of Differentiation Linearity Of The 

Operation Of Differentiation 

Differentiation Of A Composition Of Mappings  (Chain Rule) 

The Main Theorem 

The Differential And Partial Derivatives Of A Composite Real Valued 

Function  

 

3.1 INTRODUCTION 

In mathematics advanced calculus whose aim is to provide a firm logical 

foundation of analysis of calculus and a course in linear algebra treats 

analysis in one variable & analysis in several variables 

Local Properties Of Continuous Functions 

Linear Transformations L : Rm  —> R™ 
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The Norm In Rm 

The Euclidean Structure On Rm 

The Differential Of A Function Of Several Variables 

The Differential And Partial Derivatives Of A Real-Valued Function 

Coordinate Representation Of The Differential Of A 

Mapping. The Jacobi Matrix 

Continuity, Partial Derivatives And Differentiability Of A Function At A 

Point 

The Basic Laws Of Differentiation Linearity Of The 

Operation Of Differentiation 

Differentiation Of A Composition Of Mappings  (Chain Rule) 

The Main Theorem 

The Differential And Partial Derivatives Of A Composite Real Valued 

Function  

 

3.2 LOCAL PROPERTIES OF 

CONTINUOUS FUNCTIONS 

A mapping f : E  —)> Rn of a set E C Rm is continuous at a point 

a G E if and only if uo{ f\ a)=0. 

A mapping f : E  —)> Rn that is continuous at ae E is bounded in some 

neighborhood Ue(a)of that point. 

If the mapping g :Y of the set Y C Rn is continuous at a point 

yo G Y and the mapping f : X Y of the set X C Rm is continuous at a 

point xq G X and f(xo)=yo, then the mapping g o f : X  —)> Rfc is 

defined, and it is continuous at xq G X. 

Real-valued functions possess, in addition, the following properties. 

If the function f : E  —)> M is continuous at the point a <= E and 

f(a)> 0(or f(a)< 0), there exists a neighborhood Ue(cl)of a in E such 

that f(x)> 0(resp. f(x)<0)for all x eUe(q>). 
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If the functions f : E  —)> M and g : E  —)> M are continuous at a G E,  

then any linear combination of them(af+(3g): E  —)> R, where a, (3 <= 

R, t /iezr 

product(f - g): E  —)> R, and, if g(x)^ 0 on E, their quotient(^): E  —)> 

M are defined on E and continuous at a. 

Let us agree to say that the function /: E  —> Rn is continuous on the set 

E if it is continuous at each point of the set. 

The set of functions /: E  —> Rn that are continuous on E will be 

denoted C(E';Rn)or simply C(E), if the range of values of the functions is 

unambiguously determined from the context. As a rule, this abbreviation 

will be 

used when Rn=R. 

Example. The functions(a;1, ...,<=m)x%(i=1,..., m), mapping 

Rm onto R(projections)are obviously continuous at each point a = 

(a1, ...,am)G Rm, since lim 7rl(x)=a1=7r%{ a). 

x—ta 

Example . Any function x f(x)defined on R, for example x i-> sinx, can 

also be regarded as a function(x, y)f(x)defined, say, on R2. In that case,  

if /was continuous as a function on R, then the new function(x, y)\—> 

f(x)will be continuous as a function on R2. This can be verified either 

directly from the definition of continuity or by remarking that the 

function F is the composition(/o 7r1)(x, 2 /)of continuous functions. 

In particular, it follows from this, when we take account of c)and e), that 

the functions 

f(x, y)=sinx + exy, f(x, y)=arctan(ln(|x| + \y\ + 1)), 

for example, are continuous on M2. 

We remark that the reasoning just used is essentially local, and the fact 

that the functions /and F studied in Example were defined on the entire 

real line R or the plane R2 respectively was purely an accidental 

circumstance. 
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Example. The function f(x, y)of Example 2 is continuous at any point of 

the space R2 except(0, 0). We remark that, despite the discontinuity of 

f(x, y)at this point, the function is continuous in either of its two 

variables for each fixed value of the other variable. 

Example . If a function /: E  —> Rn is continuous on the set E and E is a 

subset of E, then the restriction f\g of /to this subset is continuous on E, 

as follows immediately from the definition of continuity of a function at 

a point. 

We now turn to the global properties of continuous functions. To state 

them for functions /: E  —> Rn, we first give two definitions. 

 

Definition . A mapping /: E  —> Rn of a set E C Rm into Rn is 

uniformly continuous on E if for every e > 0 there is a number 5 > 0 such 

that 

d(f(xi), f(x2)) < <= for any points X \,X2 € E such that d(x 1, ^2)< S. 

As before, the distances d(x 1, ^2)and d( /(xi), f(x2)) are let d to be 

measured in Rm and Rn respectively. 

When m=n=1, this definition is the definition of uniform continuity 

of numerical-valued functions. 

 

Definition . A set E C Rm is path wise connected if for any pair of its 

points <=0, #i, there exists a path r : I  —> E with support in E and 

endpoints at these points. 

In other words, it is possible to go from any point x$ G E to any other 

point x\ G E without leaving E. 

Since we shall not be considering any other concept of connectedness for 

a set except path wise connectedness for the time being, for the sake of 

brevity we shall temporarily call path wise connected sets simply 

connected. 
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Definition. A domain in Rm is an open connected set.  

Example. An open ball B(a\r), r > 0, in Rm is a domain. We already 

know that B(a; r)is open in Rm. Let us verify that the ball is connected.  

Let 

xo=(xl, x™)and x\=(x \,..., x™)be two points of the ball. The path 

defined by the functions xl{ t)=tx\ -f(1  — t)xl0, (i=1, ...,ra), defined on 

the closed interval 0 < t < 1, has x$ and x\ as its endpoints. In addition, 

its support lies in the ball B(a;r), since, by Minkowski's inequality, for 

any t <= [0, 1],  

Example. The circle(one-dimensional sphere)of radius r > 0 is the subset 

of R2 given by the equation { x1)2 +(x2)2=r2. Setting x1=rcost, 

x2=rsin<=, we observe that any two points of the circle can be joined by 

a path that goes along the circle. Hence a circle is a connected set. 

However, this set is not a domain in R2, since it is not open in R2. 

We now state the basic facts about continuous functions in the large. 

Global properties of continuous functions 

If a mapping f : K Rn is continuous on a compact set K C Rm,  

then it is uniformly continuous on K. 

If a mapping f : K Rn is continuous on a compact set K C Rm,  

then it is bounded on K. 

If a function f : K  —> R is continuous on a compact set K C Rm, then it 

lets its maximal and minimal values at some points of K. 

If a function f : E  —> R is continuous on a connected set E and 

lets the values f(a)=A and f(b)=B at points a, 6 G E, then for any C 

between A and B, there is a point c G E at which f(c)=C. 

Earlier when we were studying the local and global properties 

of functions of one variable, we gave proofs of these properties that 

extend to the more general case considered here. The only change that 

must be made in the earlier proofs is that expressions of the type \x\  —

X2\ or \f{ x\) — f{ x2)\  

must be replaced by d(x 1, 2:2)and d( /(xi),  /(a^)), where d is the metric 



Notes 

70 

in the space where the points in question are located. This remark applies 

fully to everything except the last statement d). 

Proof, d)Let r : I  —> E be a path that is a continuous mapping of an 

interval 

[a,  /?]=I C R such that r(a)=a, r( /3)=b. By the connectedness of E 

there exists such a path. The function /of : I  —> R, being the 

composition of continuous functions, is continuous; therefore there is a 

point 7 <= [a,  /?] on the closed interval [a, ft] at which /o r(j)=C. Set 

c=^(7). Then c <= E 

and  /(c)=C. 

 

Example The sphere 5(0; r) defined in Rm by the equation 

(*1)2 + ... +(zm)2=r2,  

is a compact set. 

Indeed, it follows from the continuity of the function 

(z1, ..., zm)^(z1)2 + ... +(zrn)2 

that the sphere is closed, and from the fact that \x%\ < r(i=1, ...,ra)on the 

sphere that it is bounded. 

The function 

(x\ ..., xm)^(x1)2 + . . • +(xk)2 -(x^1)2 (xm)2 

is continuous on all of Rm, so that its restriction to the sphere is also 

continuous, and by the global property c)of continuous functions lets its 

minimal and maximal values on the sphere. At the points(1, 0, 

...,0)and(0, ...,0, 1)this function lets the values 1 and  —1 respectively. 

By the connectedness of the sphere(observe Problem 3 at the end of this 

section), global property d)of continuous functions now enables us to 

assert that there is a point on the sphere where this function lets the value 

0. 

 



Notes 

71 

Example. The open set Rm \ 5(0; r)for r > 0 is not a domain, since it is 

not connected. 

Indeed, if r : I  —> Rm is a path one end of which is at the point x$ = 

(0, ..., 0)and the other at some point x\=(x \,..., x™)such that(x\)2-\  

(x™)2 > r2, then the composition of the continuous functions r : I  —> 

Rm and /: Rm  —> R, where 

(x1, ..., xm)J->(x1)2 + --- +(xm)2, 

is a continuous function on I assuming values less than r2 at one endpoint 

and greater than r2 at the other. Hence there is a point 7 on I at which 

(/o r)(7)=r2. Then the point x1=r(7)in the support of the path turns out to 

lie on the sphere 5(0; r). We have thus shown that it is impossible to get 

out of the ball B(0;r)C Rm without intersecting its boundary sphere 5(0; 

r). 

3.3 LINEAR TRANSFORMATIONS                    

L : RM  —> R™ 

We recall that a mapping L : X  —» Y from a vector space X into a 

vector space Y is known linear if 

L{  X\xi + X2x2)=X\L(xi)+ X2L(x2) 

for any xi, x2 G X, and Ai, A2 G R. We shall be interested in linear 

mappings 

L : Rm Rn. 

If { ei, ..., em } and { ei, ..., en } are fixed bases of Rm and Rn 

respectively, then, knowing the expansion 

L(e{ )=a\ei H b afen=a{ ej(i=1, ..., m)  

of the images of the basis vectors under the linear mapping L : Rm  —> 

Rn,  

we can use the linearity of L to find the expansion of the image L(h)of 

any vector h=hle\ H b  /imem=hlei in the basis { ei, ..., en }. To be 

specific,  
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. L(h)=L(tiei)= = h{ a{ ej=a{ h% . 

Hence, in coordinate notation: 

L(h)=(a1ihi, ..., a?hi).  

For a fixed basis in Rn the mapping L : Rm  —> Rn can thus be regarded 

as a set 

L=(L\..., Ln) 

of n(coordinate)mappings U : Rm  —> R. 

Taking account easily conclude that a mapping L : Rm  —> Rn 

is linear if and only if each mapping U in the set is linear. 

If as a column, taking account of relation we have 

(L\h)\ (a\ al\(V\ 

L(h)= •••=  •• •  

\Ln(h)J \a1 ■■■ a^J \hm) 

Thus, fixing bases in Rm and Rn enables us to establish a one-to-one 

correspondence between linear transformations L : Rm  —> Rn and m x 

n-matrices 

(a^), (i=1, ..., m, j=1, ..., n). When this is done, the ith column of the 

matrix(a^)corresponding to the transformation L consists of the 

coordinates of L(ei), the image of the vector e$ G { ei, ...,em }. The 

coordinates of the image of an arbitrary vector h=h%ei G Rm can be 

obtained from by multiplying the matrix of the linear transformation by 

the column of coordinates of h. Since Rn has the structure of a vector 

space, one can speak of linear combinations X\f\ -f A2 /2 of mappings fi : 

X  —> Rn and : X  —> Rn,  

setting 

(A1 /1 + A2 /2X2O := Ai /i(x)+ A2 /2ipt)•  

In particular, a linear combination of linear transformations L\ : Rm -» 

Rn and L2 : Rm  —> Rn is, according to the definition a mapping 
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h^\iL1(h)+ \2L2(h)=L(h),  

which is obviously linear. The matrix of this transformation is the 

corresponding linear combination of the matrices of the transformations 

L\ and L2. 

The composition C=B o A of linear transformations A : Rm  —> Rn and 

B : Rn  —> Rfc is obviously also a linear transformation, whose matrix, 

as follows from, is the product of the matrix of A and the matrix of 

B(which is multiplied on the left). Actually, the law of multiplication for 

matrices was defined in the way you are familiar with precisely so that 

the product of matrices would correspond to the composition of the 

transformations. 

 

3.4 THE NORM IN RM 

The quantity  

IMI=V(xl)2 H 1-(xm)2  

is known the norm of the vector x=(x1, ..., xm)G Rm. 

It follows from this definition, taking account of Minkowski's inequality,  

that 

i° IMI > 0,  

2°(||x||=0)(x=0),  

3° ||Ax||=|A| • ||x||, where A G R,  

4° ||x1+x2|| <|M + 11*211. 

In general, any function || || : X  —> R on a vector space X satisfying 

conditions l°-4° is known a norm on the vector space. Sometimes, to be 

precise as to which norm is being discussed, the norm sign has a symbol 

attached to it to denote the space in which it is being considered. For 

example, we can write |M|jRm or IMk71- As a rule, however, we shall 

not do that, since it will always be clear from the context which space 

and which norm are meant. 
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We remark that  

\\X2-X\W=d(x \,x2) 

where d(x 1, <=2)is the distance in Rm between the vectors x\ and X2, 

regarded as points of Rm. 

It is clear from that the following conditions are equivalent: 

x  —> xo, d(x, xo) —> 0, \\x  — xo||  —> 0 . 

In view we have, in particular,  

\\x\\=d(0, x). 

Property 4° of a norm is known the triangle inequality, and it is now 

clear why. 

The triangle inequality extends by induction to the sum of any finite 

number of terms. To be specific, the following inequality holds: 

||xi + l-Zfcll < ||»l|| + --- + ||«fc|| • 

The presence of the norm of a vector enables us to compare the size of 

values of functions /: X  —> Rm and g : X  —> Rn. 

Let us agree to write f(x)=o(g(x)) or  /=o(g)over a base B in X if 

|| /(x)||Rm = 

°(lb(x)lk71)over the base B. 

If f(x)=( /1(x), ..., fm(x)) is the coordinate representation of the map- 

ping /: X  —> Rm, then in view of the inequalities 

m 

\f(x)\ <\\f(x)\ \<^2\f(x)\   

2=1 

one can make the following observation, which will be useful below: 

= o(g)over the base B)(/z=o{ g)over the base B\ i=1, ..., m). 
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We also make the convention that the statement f=0(g)over the base 

B in X will mean that || /(x)||]Rm=0(||^(x)||]Rn)over the base B. 

We then obtain from  

( /=0(g)over the base B)(fl=0(g)over the base B\ i=1, ..., m). 

 

Example. Consider a linear transformation L : Rm  —> Rn. Let h= 

be an arbitrary vector in Rm. Let us estimate ||L(ft)||Rn: 

m m  

Y, hiL^)<E 11^)11 E 11^)" ii^ii-  

2=1 2=1 2=1 ' 

Thus one can assert that 

L(h)=0(h)as h  —> 0 . 

In particular,                                                                                             it 

follows from this that L(x  — xo)=L(x) — L(xo) —> 0 

as x  —> Xo, that is, a linear transformation L : Rm  —> Rn is 

continuous at every point x$ G Rm. Prom estimate it is even clear that a 

linear transformation is uniformly continuous. 

3.5 THE EUCLIDEAN STRUCTURE ON 

RM 

The concept of the inner product in a real vector space is known from 

algebra as a numerical function(x, y)defined on pairs of vectors of the 

space and possessing the properties 

(x, x)> 0, 

(x, x)=0 x=0, 

(xux2)=(x2, Xi), 

(Xxi, x2)= \(x \, x2), where A G R, 
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(xi + x2, x3)=(xi, x3)+(x2, x3). 

It follows in particular from these properties that if a basis { ei, ..., em } 

is fixed in the space, then the inner product(x, y)of two vectors x and y 

can be expressed in terms of their coordinates(x1, ..., xm)and(y1, ..., 

ym)as the bilinear form 

(x, y)=9ijXlyJ  

(where summation over i and j is understood), in which gij=(e^e^). 

Vectors are said to be orthogonal if their inner product equals 0. 

A basis { ei, ..., em } is orthonormal if gij=5^ -, where 

[ 0, if i + j, 

Sij=< [ 1, if i=j. 

In an orthonormal basis the inner product has the very simple form 

(x, y)=5ijXly3, 

or 

(x, y)=x1 • y1 H h xm • y™ . 

Coordinates in which the inner product has this form are known 

Cartesian coordinates. 

We recall that the space Rm with an inner product defined in it is known 

Euclidean space.  

Between the inner product and the norm of a vector there 

is an obvious connection 

(x, x)=\\x\\2 . 

The following inequality is known from algebra: 

{ x, yf <(x, x)(y, y). 
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It shows in particular that for any pair of vectors there is an angle ip G [0, 

7r] such that 

(x, y)=\\x\\ ||y|| cosy . 

This angle is known the angle between the vectors x and y. That is the 

reason we regard vectors whose inner product is zero as orthogonal. 

We shall also find useful the following simple, but very important fact,  

known from algebra: 

any linear function L : Rm  —> R in Euclidean space has the form 

L(x)={ <=, x }, 

where L G Rm is a fixed vector determined uniquely by the function L.  

 

3.6 THE DIFFERENTIAL OF A FUNCTION 

OF SEVERAL VARIABLES 

 

Differentiability and the Differential of a Function at a Point 

Definition. A function /: E  —> Rn defined on a set E C Rm is 

differentiate at the point x G E, which is a limit point of E, if 

f(x 4- ft) — f(x)=L(x)h 4- a{ x\ ft),   

where L(x): Rm  —> Rn is a function2 that is linear in ft and a(x; 

ft)=o(h)as ft  —y 0, x -f- ft G E. 

The vectors 

Ax(h):=(x 4- ft) — x=ft, 

Af(x; h):=  /(x + h)~ f(x) 

are known respectively the increment of the argument and the increment 

of the function(corresponding to this increment of the argument). These 

vectors are traditionally denoted by the symbols of the functions of ft 

themselves Ax and Af(x). The linear function L(x): Rm -> Rn in is 
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known the differential, tangent mapping, or derivative mapping of the 

function /: E  —» Rn at the point x G E. 

The differential of the function /: E  —> Rn at a point x G E is denoted 

by the symbols d f(x), Df(x), or f'(x). 

In accordance with the notation just introduced, we can rewrite relation 

as 

f(x + h)- f(x)=f'(x)h + a(x; h) 

or 

Af(x; h)=d f(x)h + a(x\ h). 

We remark that the differential is defined on the displacements h from 

the point x G Rm. 

To emphasize this, we attach a copy of the vector space Rm to the point 

x G Rm and denote it TxRm, TRm(x), or TR™. The space TR™ can be 

interpreted as a set of vectors attached at the point x G Rm. The vector 

space TR™ is known the tangent space to Rm at x G Rm. The origin of 

this terminology will be explained below. 

The value of the differential on a vector h G TR™ is the vector f'(x)h G 

TW }{ x)attached to the point f(x)and approximating the increment f(x + 

h) — f(x)of the function caused by the increment h of the argument x. 

Thus df(x)or f(x)is a linear transformation f(x): TR™  —> TR^xy 

We observe that, in complete agreement with the one-dimensional case 

that 

we studied, a vector-valued function of several variables is differentiable 

at a point if its increment Af(x; h)at that point is linear as a function of h 

up to the correction term a(x;h), which is infinitesimal as h  —> 0 

compared to the increment of the argument. 

3.7 THE DIFFERENTIAL AND PARTIAL 

DERIVATIVES OF A REAL-VALUED 

FUNCTION 
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If the vectors  /(x +  /i), f(x), L(x)h, a{ x\ h)in Rn are written in 

coordinates becomes equivalent to the n equalities 

f(x + h)~ f(x)=L\x)h + <*'(*; h)(i=1, ..., n)  between real-valued 

functions, in which, as follows from relations, Ll(x): Rm  —> R are 

linear functions and a%{ x\ h)=o(h) 

as h  —> 0, x 4- h G E, for every i=1, ..., n. 

Thus we have the following proposition. 

 

Proposition. A mapping f : E  —> Rn of a set E C Rm is differentiate at 

a point x G E that is a limit point of E if and only if the functions f% : E  

—> R 

(i=1, ...,n)that define the coordinate representation of the mappping are 

differentiate at that point. 

Since relations are equivalent, to find the differential 

L(x)of a mapping f : E  —> Rn it suffices to learn how to find the 

differentials Ll(x)of its coordinate functions f1 : E  —> R. 

Thus, Let us consider a real-valued function f : E  —> R, defined on a 

set E C Rm and differentiate at an interior point x <= E of that set. We 

remark that in the future we shall mostly be dealing with the case when E 

is a domain in Rm. If x is an interior point of E, then for any sufficiently 

small displacement ft from x the point x + h will also belong to E, and 

consequently will also be in the domain of definition of the function /: E  

—> R. 

If we pass to the coordinate notation for the point x  —(x1, ..., xm), the 

vector ft=(ft1, ...,ftm), and the linear function L(x)h=a\{ x)h } -f • • •  

am(x)ftm, then the condition 

f(x 4- ft) — f(x)=L(x)h 4- o(h)as ft  —> 0  

can be rewritten as 

f(xl+ h\..., xrn + hm)-f(x\..., xm)= ,  

= ai{ x)hl H h arn(x)hm 4- o(h)as ft  —> 0  



Notes 

80 

where ai(x), ..., am(x)are real numbers connected with the point x. 

We wish to find these numbers. To do this, instead of an arbitrary dis- 

placement ft we consider the special displacement 

hi=Wei=0 • ei 4- • • • 4- 0 • e^_i 4- Wei 4~ 0 • e^\ 4- • • • + 0 • em 

by a vector ft* collinear with the vector of the basis { ei, ..., em } in Rm. 

When ft=fti, it is obvious that ||ft||=|ftz|, and so by(8.24), for ft=hi 

we obtain 

f(x1, ..., xi-\xi + hi, a?+\,xm)-f(x\..., x\..., xm)= 

= di(x)W 4- o(W)as W  —> 0 .  

This means that if we fix all the variables in the function  /(x1, ...,xm) 

except the zth one, the resulting function of the zth variable alone is 

differentiate at the point x%. 

In that way, we find that mix)=  

— lim ->x% + WiX1*1, ...,xm)-  /(x1, ...,xl, ...,xm) 

h*->0 W  

 

Definition. The limit is known the partial derivative of the function 

f(x)at the point x=(x1, ..., xm)with respect to the variable x%. We denote 

it by one of the following symbols: 

, dif(x), Dif(x), f'xi(x) 

3.8 COORDINATE REPRESENTATION OF 

THE DIFFERENTIAL OF A MAPPING. 

THE JACOBI MATRIX 

Thus we have found formula for the differential of a real-valued function 

f : E R. But then, by the equivalence of relations for any mapping /: E R
n
 

of a set E C R
m

 that is differentiate at an interior point x G E, we can 

write the coordinate representation of the differential 

df(x)as(d f
l
(x)h\ df(x)h= \dr(X)h / \$<=(x)■■■ §<=(x)j \h

m
J 
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Definition. The matrix(difi(x))(i=1, ..., m, j=1, ..., n)of partial 

derivatives of the coordinate functions of a given mapping at the point x 

G E is known the Jacobi matrix
3
 or the Jacobian

4
 of the mapping at the 

point. In the case when n=1, we are simply brought back to formula and 

when n=1 and m=1, we arrive at the differential of a real-valued function 

of one real variable. The equivalence of relations and the uniqueness of 

the differential of a real-valued function implies the following result. 

 

Proposition . If a mapping f : E  —>• R
n
 of a set E C R

m
 is ifferentiable 

at an interior point x G E, then it has a unique differential df{ x)at that 

point, and the coordinate representation of the mapping df(x): TRJ
1
  —

>TR^(x)is given by relation. 

3. 9 CONTINUITY, PARTIAL 

DERIVATIVES, AND 

DIFFERENTIABILITY OF A FUNCTION 

AT A POINT 

We complete our discussion of the concept of differentiability of a 

function at a point by pointing out some connections among the 

continuity of a function at a 

point, the existence of partial derivatives of the function at that point, 

and differentiability at the point. 

we established that if L : R
m

  —> R
n
 is a linear transformation, then 

Lh 0 as ft 0. Therefore, one can conclude from relation that a function 

that is differentiate at a point is continuous at that point, since 

f(x 4- ft) — f(x)=L(x)h + o(ft)as ft  —0, x + h € E . 

The converse, of course, is not true because, as we know, it fails even 

in the one-dimensional case. 

                                                      
 

. 
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. Thus the relation between continuity and differentiability of a function 

at a point in the multidimensional case is the same as in the one-

dimensional case. 

The situation is completely different in regard to the relations 

between partial derivatives and the differential. In the one-dimensional 

case, that is, in the case of a real-valued function of one real variable, the 

existence of the differential and the existence of the derivative for a 

function at a point are equivalent conditions. For functions of several 

variables, we have shown that differentiability of a function at an interior 

point of its domain of definition guarantees the existence of a partial 

derivative with respect to each variable at that point. However, the 

converse is not true. 

 

Example. The function 

( 0, if x
1
x

2
=0, 

 / (x
l
,  x

2
) = i 

[ 1, if x
1
x

2
 7^ 0, 

equals 0 on the coordinate axes and therefore has both partial derivatives 

at the point(0, 0): 

' fci-y 0 h
l
 fci-y 0 h

1
 

ft /(0, 0)=,jm W')- /(0.0)= !^o=0. 

h
2
—*0 ft

2
 h

2
—*0 ft

2
 

At the same time, this function is not differentiate at(0, 0), since it is 

obviously discontinuous at that point. 

The function given in fails to have one of its partial derivatives at 

points of the coordinate axes different from(0, 0). However, the function 

f(x, y)= 

 



Notes 

83 

has partial derivatives at all points of the plane, but it also is 

discontinuous at the origin and hence not differentiate there. 

Thus the possibility of writing the right-hand side still does not 

guarantee that this expression will represent the differential of the 

function we are considering, since the function can be non differentiable. 

This circumstance might have been a serious hindrance to the entire 

differential calculus of functions of several variables, if it had not been 

determined(as will be proved below)that continuity of the partial 

derivatives at a point is a sufficient condition for differentiability of the 

function at that point. 

 

3.10 THE BASIC LAWS OF 

DIFFERENTIATION 

LINEARITY OF THE OPERATION OF 

DIFFERENTIATION 

Theorem If the mappings R
n
 and  /2 : E R

n
, defined on a 

set E C R
m

, are differentiate at a point x <= E, then a linear combination 

of them(Ai /i -f A2 /2): E R
n
 is also differentiate at that point, and the 

following equality holds: 

(Ai /i + A2 /2)'(x) —(Aif[ + A2 /2XX). 

Equality shows that the operation of differentiation, that is, forming 

the differential of a mapping at a point, is a linear transformation on the 

vector space of mappings f : E R
n
 that are differentiate at a given point of 

the set E.  

The left-hand side of  contains by definition the linear 

transformation(A1 /1+A2 /2)'(x), while the right-hand side contains the 

linear combination(Ai /{  -f A2 /2)^)of linear transformations f[(x): R
m

 

R
n
, and f^{ x): R

m
  —)• R

n
, which, as we know from Sect. 8.1, is also a 

linear transformation.  
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Theorem asserts that these mappings are the same. 

Proof 

(A1 /1 + X2f2)(x + h)-(Ai /2 + Xih){ x)= 

=(Ai /i(a; + h)4- \2f2(% + h)) ~ { Xifi(x)+ \2f2{ x)) = 

= Ai( /i(x + h)~ fi(x)) + A2( /2(x + h)~ f2(x)) = 

= Ai(f{(x)h + o(h)) + \2(f2(x)h + o(h)) = 

=(Xif[(x)+ X2f2(x))h + o{ h). □ 

If the functions in question are real-valued, the operations of 

multiplication and division(when the denominator is not zero)can also be 

performed. 

We have then the following theorem. 

Theorem:. If the functions f : E R and g : E ^ R, defined on a set 

E c R
m

, are differentiate at the point x <= E, then 

a) their product is differentiate at x and 

(/• 9)'(x)=9(x)f(x)+ f(x)g'(x);  

b) their quotient is differentiate at x if g(x)^ 0, and 

(<=)'(*)=p<=jGK*)/'(s)- f(x)9'(x)) •  

The proof of this theorem is the same as the proof of the 

corresponding parts of Theorem, so that we shall omit the details. 

Relations can be rewritten in the other notations 

for the differential. To be specific: 

d(Ai /i(a:)+ A2 /2)(x)=(Aid /i + A2d /2)(x), 

d(/• g)(x)=g(x)df(x)+ f(x)dg(x), 

d
(f)^=^)(^(®)

d
 /(®)- /(®)

d
5(®)) • 

Let us observe what these equalities mean in the coordinate 

representation of the mappings. We know that if a mapping : E  —>• 

R
n
 that is differentiable at an interior point x of the set E C R

m
 is 

written in the coordinate form 
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<p(x)= 

then the Jacobi matrix 

v'(x)=(ft"' )(x)=(a, vJ)(x) 

will correspond to its differential d<^(x): R
m

 R
n
 at this point. 

For fixed bases in R
m

 and R
n
 the correspondence between linear 

transformations L : R
m

  —»• R
n
 and m x n matrices is one-to-one, and 

hence the linear transformation L can be identified with the matrix that 

defines it. 

Even so, we shall as a rule use the symbol f'{ x)rather than d /(x)to 

denote the Jacobi matrix, since it corresponds better to the traditional 

distinction between the concepts of derivative and differential that 

holds in the one-dimensional case. 

Thus, by the uniqueness of the differential, at an interior point x of 

E we obtain the following coordinate notation for denoting the equality 

of the corresponding Jacobi matrices:  

(<9i(Ai /i +Mfi)){ x)=(Ai<9i /i + A 2difi)(x) 

(i = j=1, ..., n),  

(di(f ■ 9))(x)=g(x)dif(x)+ f(x)dig(x)=  

=
 <72^ ~ f{ x)d%g{ x))(i=1, ..., m).  

It follows from the elementwise equality of these matrices, for 

example, that the partial derivative with respect to the variable x
1
 of the 

product of real-valued functions  /(x
1
, ..., x

m
)and ^(x

1
, ..., x

m
)should be 

taken as follows: 

d ^ ' s ) (xi xm)_ 

dxi (® >•••>* 

fl(®1, ..., ®m)^(®1, ..., ®m)+  /(s1, ..., ®TO)^(®1, ..., ®m). 

We note that both this equality and the matrix equalities are obvious 

consequences of the definition of a partial derivative 
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and the usual rules for differentiating real-valued functions of one real 

variable. However, we know that the existence of partial derivatives can 

still turn out to be insufficient for a function of several variables to be 

differentiate. For that reason, along with the important and completely 

obvious equalities, the assertions about the existence of a differential for 

the corresponding mapping in Theorems acquire a particular importance. 

We remark finally that by induction using one can obtain the relation 

d( /i, • • •, fk){ x)=( /2 • • • fk)(x)dfi(x)+ 1-(/i • • • fk-iWk(x) 

for the differential of a product(fi'  — fk)of differentiate real-valued 

functions. 

 

3.11 DIFFERENTIATION OF A 

COMPOSITION OF MAPPINGS  (CHAIN 

RULE) 

 

THE MAIN THEOREM 

Theorem. If the mapping f : X  —>• Y of a set X C R
m

 into a set Y C 

R
n
 is differentiate at a point x G X, and the mapping f : Y R

k
 is 

differentiate at the pointy=f(x)G Y, then their composition go f : X R
fc 

is 

differentiate at x and the differential d(g o  /): TR™  —)• TR^^ of the 

composition equals the composition dg(y)o d /(x)of the differentials 

df(x): TR™ TW }ix)=y, dg(y): TR™ TR
k

g{ y) 

The proof of this theorem repeats almost completely the proof of 

Theorem In order to call attention to a new detail that arises in 

this case, we shall nevertheless carry out the proof again, without going 

into technical details that have already been discussed, however. 

Proof. Using the differentiability of the mappings /and g at the points x 

and y= /(#), and also the linearity of the differential g'(x), we can write 

(9 
0
 f)(x + h)-(go f)(x)=g(f(x + h)) - g{ f(x)) = 
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= 9'{ f(x))(f(x + h)~ f(x)) + o(f(x + h)~ f(x)) = 

= 9'(y)(f'{ x)h + o{ h)) + o(f(x + h)~ f(x)) = 

= g'{ y)(f(x)h)+ g'(y)(o(h)) + o(f(x + h)-  /(x)) = 

=(:g'{ y)° f'(x))h + a(x; h), 

where g'{ y)o f'{ x)is a linear mapping(being a composition of linear 

mappings), and 

at(x; h)=g'(y)(o(h)) + o(f(x + h)- f(xj). 

 

g'(y)(o(h))=o(h)ash-t 0,  

f(x + h) —  /(x)=f'(x)h + o(h)=0(h)+ o(h)=0(h)as h -¥ 0, 

and 

°(f(
x
 + h) — f(x))=o(0(h))=o(h)as h  —>• 0 . 

Consequently,  

a(x\ h)=o(h)+ o( /i)=o(h)as h  —)► 0, 

and the theorem is proved. □ 

When rewritten in coordinate form, Theorem means that if x is an 

interior point of the set X and 

/dif
1
(x)••• dmf

1
(x)\ 

=(dif
j
)(x), 

\dif
n
(x)dmf

n
(x)J 

and y=f(x)is an interior point of the set Y and 

 /dig
l
(y)••• dng

1
(y)\  

= { djg
k
)(y),  

\dig
k
(y)■■■ dng

k
(y)\ di9

k
( y ) ••• dng

k
(y) / 

In the equality 

{ di(g
l
 o f))(x)=djg

l
{ f{ x)) ■ dif

j
(x)) 

summation is understood on the right-hand side with respect to the index 

j over its interval of variation, that is, from 1 to n even in the sense of 
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elementwise equality of the matrices occurring in it. 

Let us now consider some important cases of the theorem just proved. 

 

3.12 THE DIFFERENTIAL AND PARTIAL 

DERIVATIVES OF A COMPOSITE REAL 

VALUED FUNCTION  

Let z=g(y
1
, ..., y

n
)be a real-valued function of the real 

variables y
1
, ..., y

n
, each of which in turn is a function yi= /^(x

1
, ..., x

m
) 

(j=1, ..., n)of the variables x
1
, ..., x

m
. Assuming that the functions g and 

are differentiate(j=1, ..., n), Let us find the partial derivative 
d
^°P(x)of 

the composition of the mappings /: X  —^ Y and g : Y  —> R. 

According to formula, in which I=1 under the present conditions,  

we find 

di(g ° f)(x)=djg(f(x)) ■ dif
3
(x),  

or, in notation that shows more detail= di g{ f(x)) ■ difix)H + dng(f{  x)) 

■ dif
n
(x). 

The Derivative with Respect to a Vector and the Gradient of a Function 

at a Point Consider the stationary flow of a liquid or gas in some domain 

G of R
3
. The term "stationary" means that the velocity of the flow at each 

point of G does not vary with time, although of course it can vary from 

one point of G to another. Suppose, for example,  /(x)= /(x
1
, x

2
, x

3
)is the 

pressure in the flow at the point x=(x^x^x
3
)G G. If we move about in the 

flow according to the law x=x(<=), where t is time, we shall record a 

pressure(/o x)(t)=f(x(t)) at time t. The rate of variation of pressure over 

time along our trajectory is obviously the derivative of function(f 

ox)(t)with respect to time. Let us find this derivative, assuming that  /(x
1
, 

x
2
, x

3
)is a differentiate function in the domain G. By the rule for 

differentiating composite functions, we find 

(t)=+ ^(®(*))®
2
W + ^(®(0)®

3
w »(8-36) 

where x
l
(t)=^(t)(i=1, 2, 3). 
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Since the vector(x
x
, x

2
, x

3
)=v(t)is the velocity of our displacement at 

time t and(dif, d2f, dsf)(x)is the coordinate notation for the differential d 

/(x)of the function /at the point x, can also be rewritten as that is, the 

required quantity is the value of the differential d /(x(t)) of the function  

/(x)at the point x(t)evaluated at the velocity vector v(t)of the motion. 

In particular, if we were at the point xo=x(0)at time t=0, then 

^l<=^.(0)=df(xo)v,   

where v=t>(0)is the velocity vector at time t=0. 

The right-hand side depends only on the point Xo G G and the 

velocity vector v that we have at that point; it is independent of the 

specific form of the trajectory x=x(<=), provided the condition x(0)=v 

holds. That means that the value of the left-hand side is the same on any 

trajectory of the form 

x(t)=xo 4- vt 4- ct(t),  

where a(t)=o(t)as t 0, since this value is completely determined by 

giving the point xo and the vector v G TR
3

o attached at that point. In 

particular, if we wished to compute the value of the left-hand side of 

directly(and hence also the right-hand side), we could choose the law of 

motion to be 

x(t)=xo 4- vt,   

corresponding to a uniform motion at velocity v under which we are at 

the point x(0)=xo at time t=0. 

We now give the following 

 

Definition. If the function  /(x)is defined in a neighborhood of the point 

Xo G R
m

 and the vector v G TR™ is attached at the point xo, then the 

quantity 

 fix0 + vt)- fixo) 
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Dvf(x0):= lim ----------   ---------  

(if the indicated limit exists)is known the derivative of f at the point Xo 

with 

respect to the vector v or the derivative along the vector v at the point 

xq.  

It follows from these considerations that if the function /is 

differentiate at the point #o, then the following equality holds for any 

function x(t)of the nd in particular, for any function of the form  

Dvf(x0)=<V(0)=df(x0)v .  

In coordinate notation, this equality says 

Dvf(x0)=^(xoW + • • • + T~(xo)v
m

 ■  

In particular, for the basis vectors e\=(1, 0, ..., 0), ..., em=(0, ..., 0, 1) 

this formula implies 

DeJ{ xo)=^i(xo)(i=l, ..., m). 

By virtue of the linearity of the differential d /(#o), we deduce from 

that if /is differentiate at the point #o, then for any vectors v±, V2 G  

TR™ and any Ai, A2 G R the function has a derivative at the point xq 

with respect to the vector(Aitq -f X2V2)G TR™, and that 

D\lVj+\2V2f(x0)=XiDvJ(x0)+ \2DV2f(x0)•  

If R
m

 is regarded as a Euclidean space, that is, as a vector space with 

an inner product, then it is possible to write any linear functional L(v)as 

the inner product(<=, v)of a fixed vector <==<=(L)and the variable 

vector v. 

In particular, there exists a vector <= such that 

df(x0)v=(<=, v).  

Definition. The vector <= G TR!^ corresponding to the differential 

df(xo)of the function /at the point xo in the sense is known the 

gradient of the function at that point and is denoted grad /(#o). 

Thus, by definition 
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df(x0)v=(grad /(x0), v). 

If a Cartesian coordinate system has been chosen in R
m

, then, by 

comparing relations we conclude that the gradient has  the following 

representation in such a coordinate system: 

We shall now explain the geometric meaning of the vector grad  /(#o)- 

Let e G TR™0 be a unit vector. Then  

Def(xo)=|grad f(xo)\ cosip,  

where tp is the angle between the vectors e and grad f(xo). 

Thus if grad f(xo)^ 0 and e=||grad  /(xo)||
_1

grad  /(#o), the derivative 

Def{ xo)lets a maximum value. That is, the rate of increase of the func- 

tion  /(expressed in the units of /relative to a unit length in M
m

)is 

maximal 

and equal to ||grad f(xo)|| for motion from the point Xo precisely when 

the 

displacement is in the direction of the vector grad f(xo). The value of the 

function decreases most sharply under displacement in the opposite 

direction,  

and the rate of variation of the function is zero in a direction 

perpendicular 

to the vector grad f(xo). 

The derivative with respect to a unit vector in a given direction is 

usually 

known the directional derivative in that direction. 

Since a unit vector in Euclidean space is determined by its direction 

cosines 

e  —(cos oc cos Ocfft)i 

where ai is the angle between the vector e and the basis vector e* in a 

Cartesian coordinate system, it follows that 

Def(xo)=(grad f(x0), e)= —(a;0)coso;i + ------ b ^^-(xo)cosam . 
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The vector grad f(xo)is encountered very frequently and has 

numerous 

applications. For example the so-known gradient methods for finding 

extrema 

of functions of several variables numerically(using a computer)are based 

on 

the geometric property of the gradient just noted. 

Many important vector fields, such as, for example, a Newtonian 

gravi- 

tational field or the electric field due to charge, are the gradients of 

certain 

scalar-valued functions, known as the potentials of the fields  

Many physical laws use the vector grad /in their very statement. For 

example, in the mechanics of continuous media the equivalent of 

Newton's 

basic law of dynamics ma=F is the relation 

pa= —grad p,  

which connects the acceleration a=a(x, t)in the flow of an ideal liquid or 

gas free of external forces at the point x and time t with the density of 

the 

medium p=p(x, t)and the gradient of the pressure p=p(x, t)at the same 

point and time  

We shall discuss the vector grad /again later, when we study vector 

analysis and the elements of field theory.  

 

Check your Progress-1 

Discuss Local Properties Of Continuous Functions  

________________________________________________________ 

________________________________________________________ 

________________________________________________________ 
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Discuss Functions of variable 

________________________________________________________ 

________________________________________________________ 

________________________________________________________ 

3.13 LET US SUM UP 

In this unit we have discussed the definition and example of Local 

Properties Of Continuous Functions, Linear Transformations L : Rm  —

> R™, The Norm In Rm, The Euclidean Structure On Rm, The 

Differential Of A Function Of Several Variables, The Differential And 

Partial Derivatives Of A Real-Valued Function, Coordinate 

Representation Of The Differential Of A Mapping. The Jacobi Matrix, 

Continuity, Partial Derivatives And Differentiability Of A Function At A 

Point, The Basic Laws Of Differentiation Linearity Of The Operation Of 

Differentiation, Differentiation Of A Composition Of Mappings  (Chain 

Rule) The Main Theorem, The Differential And Partial Derivatives Of A 

Composite Real Valued Function  

3.14 KEYWORDS 

1. Local Properties Of Continuous Functions:   A mapping f : E  —)> Rn 

of a set E C Rm is continuous at a point a G E if and only if uo{ f\ a)=0. 

2.Linear Transformations: L : Rm  —> R™   We recall that a mapping L 

: X  —» Y from a vector space X into a vector space Y is known linear if 

L{  X\xi + X2x2)=X\L(xi)+ X2L(x2) 

3.The Norm In Rm  The quantity IMI=V(xl)2 H 1-(xm)2 is known 

the norm of the vector x=(x1, ..., xm)G Rm. 

4. The Euclidean Structure On Rm: The concept of the inner product in a 

real vector space is known from algebra as a numerical function(x, y) 

defined on pairs of vectors of the space and possessing the properties 

5.The Differential Of A Function Of Several Variables:   Differentiability 

and the Differential of a Function at a Point 
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6. The Basic Laws Of Differentiation Linearity Of The Operation Of 

Differentiation     Theorem If the mappings R
n
 and  /2 : E R

n
, defined on 

a set E C R
m

, are differentiate at a point x <= E 

7. Differentiation Of A Composition Of Mappings  (Chain Rule) The 

Main Theorem : If the mapping f : X  —>• Y of a set X C R
m

 into a set 

Y C R
n
 is differentiate at a point x G X 

8.The Differential And Partial Derivatives Of A Composite Real Valued 

Function     Let z=g(y
1
, ..., y

n
) be a real-valued function of the real 

variables y
1
, ..., y

n
, each of which in turn is a function 

3.15 QUESTIONS FOR REVIEW 

Explain Local Properties Of Continuous Functions 

Explain Function of Variables 

 

3.16 ANSWERS TO CHECK YOUR 

PROGRESS 

 

Local Properties Of Continuous Functions 

 

(answer for Check your Progress-1 Q) 

Function of Variables 

3.17 REFERENCES 

 Analysis of Several Variables 

 Application of Several Variables 

 System of Equation 

 Function of Real Variables 

 Real Several Variables 

 Elementary Variables 
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UNIT - IV: DIFFERENTIAL 

CALCULUS OF REAL-VALUED 

FUNCTIONS OF SEVERAL 

VARIABLES 

STRUCTURE 

4.0 Objectives 

4.1 Introduction 

4.2 The Basic Facts Of Differential Calculus Of Real-Valued Functions 

Of Several Variables…The Mean-Value Theorem 

4.3 A Sufficient Condition For Differentiability Of A Function Of 

Several Variables 

4.4 Higher-Order Partial Derivatives 

4.5 Real-Valued Functions Of Several Variables 

4.6 Taylor's Formula 

4.7 Extrema Of Functions Of Several Variables 

4.8 The Implicit Function Theorem 

4.9 Elementary Version Of The Implicit Function Theorem 

4.10 Let Us Sum Up 

4.11 Keywords 

4.12 Questions For Review 

4.13 Answers To Check Your Progress 

4.14 References 

4.0 OBJECTIVES 

After studying this unit, you should be able to: 



Notes 

96 

Learn, Understand about Facts Of Differential Calculus Of Real-Valued 

Functions Of Several Variables, The Mean-Value Theorem                                                                                 

Learn, Understand about A Sufficient Condition For Differentiability Of 

A Function Of Several Variables                                                                                                                  

Learn, Understand about Higher-Order Partial Derivatives                                                                  

Learn, Understand about Real-Valued Functions Of Several Variables                                         

Learn, Understand about Taylor's Formula                                                                          

Learn, Understand about Extrema Of Functions Of Several Variables                                         

Learn, Understand about The Implicit Function Theorem                                                             

Learn, Understand about Elementary Version Of The Implicit Function 

Theorem 

 

4.1 INTRODUCTION 

In mathematics advanced calculus whose aim is to provide a firm logical 

foundation of analysis of calculus and a course in linear algebra treats 

analysis in one variable & analysis in several variables 

The Basic Facts Of Differential Calculus Of Real-Valued Functions Of 

Several Variables, The Mean-Value Theorem, A Sufficient Condition 

For Differentiability Of A Function Of Several Variables, Higher-Order 

Partial Derivatives, Real-Valued Functions Of Several Variables, 

Taylor's Formula, Extrema Of Functions Of Several Variables, The 

Implicit Function Theorem, Elementary Version Of The Implicit 

Function Theorem 

4.2 THE BASIC FACTS OF 

DIFFERENTIAL CALCULUS OF REAL-

VALUED FUNCTIONS OF SEVERAL 

VARIABLES 

THE MEAN-VALUE THEOREM 

Theorem. Let f : G -» R be a real-valued function defined in a region 

G C M.m, and Let the closed line segment [x, x + h\ with endpoints x 
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and 

x + h be contained in G. If the function f is continuous at the points of the 

closed line segment [x, x + h] and differentiate at points of the open 

interval ]x, x+ft[, then there exists a point <= E]x, x+ft[ such that the 

following equality holds:   

f(x + h)~ f(x)=f'{ <=)h ■  

Proof Consider the auxiliary function 

F(t)=f(x + th) 

defined on the closed interval 0 < t < 1. This function satisfies all the 

hypotheses of Lagrange's theorem: it is continuous on [0, 1], being the 

composition of continuous mappings, and differentiable on the open 

interval ]0, 1[,  

being the composition of differentiable mappings. Consequently, there 

exists a point 9 E]0, 1[ such that 

F(l)- F(0)=F\9)• 1 . 

But F(l)=f(x +  /i), F(0)= /(x), F'{ 6)=f'{ x + 0 /i)/i, and hence the 

equality just written is the same as the assertion of the theorem.  

We now give the coordinate form of relation. 

If x=(x1, ..., xm), h=(ft1, ..., ftm), and <==(x1 + Oh1, ..., xm + 6hm), 

means that f(x + h)- f(x)= /(x1 + h1, .. ., xm + hm)-  /(x1, ..., xm)= 

=  ^«>)(•"„)= 

= dx fiOh1 + ---+dmf(Ohm 

m . 

= Y, 9if{ x1+6h1, ..., xm + ehm)hi . 

2=1 

Using the convention of summation on an index that appears as both 

superscript and subscript, we can finally write 

fix1 + h1, ..., xm + hm)- fix1, ..., xm)= 
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= difix1 + eh1, ..., xm + ehm)ti, (8.54) 

where 0 < 6 < 1 and 6 depends on both x and ft. 

Remark. Theorem  is known the mean-value theorem because there 

exists 

a certain "average" point <= g]x, x + h[ at which holds. We have 

already noted in our discussion of Lagrange's theorem that 

the mean-value theorem is specific to real-valued functions.                  A 

general finite increment theorem for mappings will be proved. 

 

Corollary. If the function f : G -» R is differentiate in the domain G c 

Mm and its differential equals zero at every point x g G, then f is 

constant in the domain G. 

Proof The vanishing of a linear transformation is equivalent to the 

vanishing of all the elements of the matrix corresponding to it. In the 

present case 

df(x)h=(5i /, ..., dmf)(x)h, 

and therefore d\ f(x)=• • •=dmf(x)=0 at every point x G G. 

By definition, a domain is an open connected set. We shall make use of 

this fact. 

We first show that if x g G, then the function /is constant in a ball 

B(x;r)c G. Indeed, if(x + h)g B(x;r), then [x, x + ft] c B(x;r)c G. 

Applying relation, we obtain 

f(x + ft)- f(x)=f'(Qh=0 • ft=0, 

that is, f(x + ft)= /(x), and the values of /in the ball B{ x\ r)are all equal 

to the value at the center of the ball. 

Now Let Xo, Xi g G be arbitrary points of the domain G. By the con- 

nectedness of G, there exists a path t h* x(t)g G such that x(0)=xo and 

x(l)=X\. We let that the continuous mapping t x(t)is defined on the closed 

interval 0 < t < 1. Let B{ x$\r)be a ball with center at xo con- 

tained in G. Since x(0)=Xo and the mapping t h* x(t)is continuous, there 
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is a positive number 8 such that x(t)G B(xo; r)C G for 0 < t < 8. Then, by 

what has been proved, (/o x)(t)=f(xo)on the interval [0, 8]. 

Let I=sup 5, where the upper bound is taken over all numbers 8 G [0, 1] 

such that(/o x)(t)=f(xo)on the interval [0, 5]. By the continuity of the 

function  /(x(<=)) we have  /(x(Z))=f(xo). But then 1=1. Indeed, if that 

were not so, we could take a ball B(x(Z); r)C G, in which 

f(x)=f(x(l))=f(x0), and then by the continuity of the mapping t x(t)find A 

> 0 such that x(t)G B(x{ l)\  r)for I < t < I + A. But then(/o 

x)(t)=f(x(l))=f(xo)for 

0 <t<l + A, and so I ^ sup 8. 

Thus we have shown that(fox)(t)=f(xo)for any t G [0, 1]. In particular 

(f°x)( 1)=f(xi)= /(x0), and we have verified that the values of the function 

/: G -> R are the same at any two points xo, x\ G G. 

4.3 A SUFFICIENT CONDITION FOR 

DIFFERENTIABILITY OF A 

FUNCTION OF SEVERAL 

VARIABLES 

Theorem. Let f : U(x)-» R be a function defined in a neighborhood 

U(x)C Mm of the point x=(x1, ..., xm). 

If the function f has all partial derivatives,..., at each point of 

the neighborhood U(x)and they are continuous at x, then f is differentiate 

at x. 

Proof Without loss of generality we shall let that U(x)is a 

ball B{ x\r). Then, together with the points x=(x1, ...^™)and 

x + h=(x1 + ft1, ...,xm +  /im), the points(x\x2 +  /i2, ..., xm + 

 /im), ..., (x1, x2, ..., xm_1, xm + hm)and the lines connecting them must 

also belong to the domain U(x). We shall use this fact, applying the La- 

grange theorem for functions of one variable in the following 

computation: 

f(x + h)- f(x)=fix1 +h1, ..., xm + hm)- fix1, ...,xm)= 

= fix1 +H1, ..., xm + hm) — fix1, x2 +h2, ..., xm + hm)+ 
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+ fixx, x2 + h2, ...,xm + hm) — fix1,x2,x2 + h3, ...,xm + hm)H b 

+ fix1,x2, ..., xm-\xm + hm)- fix1,..., Xm)= 

= di fix1 +01h1, x2 + h2, ..., xm + hm)h } + 

+ d2fixx, x2 4- d2h2, x3 + h, 3, ...,xm + hm)h2 H b 

+ Omfix^x2, x™'1, xm + emhm)hm . 

So far we have used only the fact that the function /has partial derivatives 

with respect to each of its variables in the domain U(x).      We now use 

the fact that these partial derivatives are continuous at x. 

Continuing the preceding computation, we obtain  

f(x + h)- f(x)=di /(x1, .. ., xm)h } + a1^1 + 

+d2f(x1, .. ., xm)h2 + a2h2 H h 

+dmf(x1, ..., xm)hm+amhm, 

where the quantities a \,..., am tend to zero as h  —» 0 by virtue of the 

continuity of the partial derivatives at the point x. 

But this means that 

f(x + h) — f(x)=L(x)h + o(h)as h -» 0, 

where L(x)h=<9i /(x\..., xm)/i1 H h dmf(x\  

It follows from Theorem that if the partial derivatives of a function 

/: G -» R are continuous in the domain G C Rm, then the function is 

differentiable at that point of the domain. 

Let us agree from now on to use the symbol C^^(G;R), or, more simply,  

C^(G)to denote the set of functions having continuous partial derivatives 

in the domain G. 

4.4 HIGHER-ORDER PARTIAL 

DERIVATIVES 

If a function /: G R defined in a domain G C Rm has a partial derivative 

with respect to one of the variables x1, ..., xm, this partial derivative 
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is a function dif : G -» R, which in turn can have a partial derivative 

dj(dif)(x)with respect to a variable xK 

The function dj(dif): G -» R is known the second partial derivative of f 

with respect to the variables x% and and is denoted by one of the 

following 

symbols: 

d2f 

dxi dx1 

The order of the indices indicates the order in which the differentiation is 

carried out with respect to the corresponding variables. 

We have now defined partial derivatives of second order. 

If a partial derivative of order k 

= dJ.'.dxi.(*> 

has been defined, we define by induction the partial derivative of order k 

+ 1 

by the relation 

dih-ij(x):=ai(ail...ifc/)(x). 

At this point a question arises that is specific for functions of several 

variables: Does the order of differentiation affect the partial derivative 

computed? 

 

4.5 REAL-VALUED FUNCTIONS OF 

SEVERAL VARIABLES 

Theorem. If the function f : G -» R has partial derivatives 

i W 5 

dxidx^ dxidx1 
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in a domain G, then at every point x G G at which both partial 

derivatives are continuous, their values are the same. 

Proof Let x <= G be a point at which both functions dijf : G -» R and 

djif G  —» R are continuous. From this point on all of our arguments are 

carred out in the context of a ball B(x;r)C G, r > 0, which is a convex 

neighborhood of the point x. We wish to verify that 

^ ^ -(x1 Xm)=d f  /gl 

dxidx^ ''"' dx^dx1 

Since only the variables x* and xJ will be changing in the computations 

to follow, we shall let for the sake of brevity that /is a function of two 

variables  /(x1, #2), and we need to verify that 

df(x\x2)= { x\x2),  

dx1dx2 ' dx2dx1 

if the two functions are both continuous at the point(x1, x2). 

Consider the auxiliary function 

F^ft1, ft2)= /(x1 + ft1, x2 + ft2) —  /(x1 + ft1, x2) —  /(x1, x2 + ft2)+  

/(x1, x2), 

where the displacement ft=(ft1, ft2)is letd to be sufficiently small,  

namely so small that x + ft G B(x; r). 

If we regard F(ftx, ft2)as the difference 

Fih1, ^)=ip{  1)- <p(0), 

where y>(<=)= /(x1 + 2ft1, x2 + ft2) —  /(x1 + 2ft1, x2), we find by 

Lagrange's theorem that 

F(ftx, ft2)=^'(^i)=(d\f(x1 + 6\hl,x2 + ft2) — ^ /(x1 + flift^x2)) /^1 . 

Again applying Lagrange's theorem to this last difference, we find that 

F(hl, h2)=^ /(x1 + #ift\x2 + 62h2)h2hl .  

If we now represent F(ftx, ft2)as the difference 

F( /i\ /I2)=^(1)-^(0),  
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where(p{ t)= /(x1 + ftx, x2 + th2) —  /(xx, x2 + 2ft2), we find similarly 

that 

F(hl, h2)=d\2f(xl + 6ihl, x2 + 62h2)hlh2 .  

Comparing we conclude that 

021  /(x1 + 6ihl, x2 + 02h2)=d\2f{ xl + 6\hl, x2 + 02h2),  

where 6i, 62, 6 \,62 G]0, 1[. Using the continuity of the partial 

derivatives at 

the point(x1, x2), as ft  —» 0, we get the equality we need as a 

consequence of d2if(x1, x2)=di2f{ xl, x2). □ 

We remark that without additional assumptions we cannot say in general 

that dijf(x)=djif(x)if both of the partial derivatives are defined at the 

point x(observe Problem 2 at the end of this section). 

Let us agree to denote the set of functions /: G  —» R all of whose partial 

derivatives up to order k inclusive are defined and continuous in the 

domain G C Rm by the symbol C«(G; R)or C^(G). 

 

Proposition . Iff G C^k\G\ R), the value di1...ikf(x)of the partial deriva- 

tive is independent of the order i \,..., i^ of differentiation, that is, remains 

the same for any permutation of the indices i \,..., zV 

Proof. In the case k=2 this proposition is contained 

Let us let that the proposition holds up to order n inclusive. We shall 

show that then it also holds for order n + 1. 

But dili2...in+1f(x)=dil(di2...in+1f)(x). By the induction assumption 

the indices i2, ...,in+i can be permuted without changing the function 

di2."in+if(x)i and hence without changing di1...in+1f(x). For that reason 

it 

suffices to verify that one can also permute, for example, the indices i\ 

and i2 without changing the value of the derivative di1i2...in+1f(x). 

Since 

0»i<2-i«+i /(s)=9ili2{ di3."in+1f)(x), 
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the possibility of this permutation follows immediately By the induction 

principle 

 

Example. Let  /(x)= /(xx, x2)be a function of class C^(G;R). 

Let h=(ft1, ft2)be such that the closed interval [x, x + ft] is contained in 

the domain G. We shall show that the function 

<p(t)=f(x + th), 

which is defined on the closed interval [0, 1], belongs to class C^[0, 1] 

and find its derivative of order k with respect to t. 

We have 

cp'(t)=d\f(xl + tft1, x2 + ^ft2)ft1 +d2f(x1 + ^ft1, x2 + <=ft2)ft2, 

ip"(t)=dn f(x + th)hlhl + d2\f(x + ^ft)ft2ftx + 

+ <9i2 f(x + ^ft)ftxft2 + d22 f(x + th)h2h2 = 

= <9n /(x + ^ft)(ftx)2 + 2<9i2 /(x + ^ft)ftxft2 + d22f(x + ^ft)(ft2)2 . 

These relations can be written as the action of the operator(hld\ + h2): 

ip'(t)=(hld 1 + h2d2)f(x + th)=hldif(x + th), 

<p"{ t)=(h }d\ + h2d2)2f(x + th)=hllhl2dili2f(x + th). 

By induction we obtain 

cp^k\t)=(h }d\ + h2d2)kf(x + th)=h11 - " h%kdil...ikf{ x + th) 

(summation over all sets i \,..., «<= of k indices, each assuming the 

values 1 and 2, is meant). 

 

Example. If f(x)= /(a;1, ..., #™)and /G C^(G;R), then, under the 

assumption that [x, x + h] C G, for the function(p(t)=f(x + th)defined on 

the closed interval [0, 1] we obtain 

ip^k\t)=h11 - • • h'lkdi1...ikf(x + th),  
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where summation over all sets of indices z'i, ..., each assuming all values 

from 1 to m inclusive, is meant on the right. 

We can also write formula as 

= { rtdi + • • • + hmdm)kf(x + th)  

 

4.6 TAYLOR'S FORMULA 

Theorem:. If the function f : U(x)-» R is defined and belongs to class 

C<n>(Cf(s); R)in a neighborhood U(x)C Rm of the point x G Rm, and 

the closed interval [x, x + h] is completely contained in U{ x), then the 

following equality holds: 

 /(x1 + h1, ..., xm + hm)- f(xx, ..., xm)= 

n—1 

= ^2 T \(hldi "l•" hmdm)kf(x)+ rn-i(x; h), 

k—1 * 

where 

1 n 1 

rn_1(»;ft)=J(|(fe1^ + • • • + hmdm)nf(x + th)dt. 

Taylor's formula with integral form of the remainder.                    

Taylor's formula follows immediately from the corresponding Taylor 

formula for a function of one variable. In fact, consider the auxiliary 

function 

(p(t)=f(x + th), 

which, by the hypotheses is defined on the closed interval  

0 < t < 1 and(as we have verified above)belongs to the class C^[0, 1]. 

Then for r G [0, 1], by Taylor's formula for functions of one variable, we 

can write that 

<P(r)=<p(0)+ ^'(0)r + • • • + + 
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+ }i10Wv*, { tT }T"'it' 

0 

Setting r=1 here, we obtain 

V(1)=v(0)+ ^'(0)+ • • • +(^yn-"(0)+ 

+  /(1(„"-"i)!ly""(')'it-(8'62) 

0 

Substituting the values 

v?(fc)(0)=(h'd, + • • • + hmdm)kf{ x)(k=0, ..., n - 1), 

^n\t)=(h }d 1 + • • • + hmdm)nf(X + th), 

into this equality in accordance with formula  

Remark. If we write the remainder term in relation in the Lagrange 

form rather than the integral form, then the equality 

<p(i)=m + jj<p'(o)+ ■■■ + + ±r(n)(0),  

where 0 < 9 < 1, implies Taylor's formula with remainder term 

rn_i(x; h)=^(hldi H b hmdrn)nf(x + 6h).  

This form of the remainder term, as in the case of functions of one 

variable is known the Lagrange form of the remainder term in Taylor's 

formula. 

Since /G(U(x); R), it follows from that 

rwfo h)=^{ h }d 1 + • • • + hmdm)nf{ x)+ o(\\h\r)as h -> 0, 

and so we have the equality  

fix1 + h\..., xm + hm)-f(x1, ..., xm)= 

= it(^1 + • • • + hmdm)kf(x)+ o(||*P)as h -> 0  

k=1 

known Taylor's formula with the remainder term in Peano form. 
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4.7 EXTREMA OF FUNCTIONS OF 

SEVERAL VARIABLES 

One of the most important applications of differential calculus is its use 

in finding extrema of functions. 

Definition. A function /: E -» R defined on a set E C Rm has a local 

maximum(resp. local minimum)at an interior point Xo of E if there exists 

a neighborhood U(xo)C E of the point xo such that f(x)< f(xo)(resp.f{ 

x)> f(xo)) for all x G U(x0). 

If the strict inequality f(x)< f(xo)holds for x G U(xo)\ xo(or, respectively, 

f(x)> f(xo)), the function has a strict local maximum(resp. strict local 

minimum)at xo. 

 

Definition. The local minima and maxima of a function are known its 

local extrema. 

Theorem. Suppose a function f : U(xo) —» R defined in a neighborhood 

U(xq)C Rm of the point xo=(xj, ..., x^)^as partial derivatives with respect 

to each of the variables x1, ..., xm at the point xo- 

Then a necessary condition for the function to have a local extremum at 

xo is that the following equalities hold at that point: 

= =  

Proof. Consider the function(p(xx)= /(x1, Xq, ..., x™)of one variable 

defined, according to the hypotheses of the theorem, in some 

neighborhood of the point xj on the real line. At xj the function(fix1)has 

a local extremum, and since 

<p'(xo)=§^{ xl4, ..., xV), 

it follows that Jjt(#o)=0. 

The other equalities are proved similarly.  
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We call attention to the fact that relations give only necessary but 

not sufficient conditions for an extremum of a function of several 

variables. 

An example that confirms this is any example constructed for this 

purpose for functions of one variable. Thus, where previously we spoke 

of the function x h* x3, whose derivative is zero at zero, but has no 

extremum there 

f(x\..., xm)=(x1)3, 

all of whose partial derivatives are zero at Xo=(0, ..., 0), while the 

function obviously has no extremum at that point. 

Theorem shows that if the function /: G  —> R is defined on an open 

set G C Rm, its local extrema are found either among the points at which  

/ 

is not differentiate or at the points where the differential d /(#o)or, what 

is the same, the tangent mapping f'(xo), vanishes. 

We know that if a mapping /: U(xo)-» Rn defined in a neighborhood 

U(xo)C Rm of the point Xo G Rm is differentiate at #o, then the matrix 

of the tangent mapping f'(xo): Rm -» Rn has the form 

d1f1(x0)■■■ dmf1(xo)\  

difn(x0)■ • ■ dmfn(x0)J 

 

Definition. The point Xo is a critical point of the mapping f : U(xo) —» 

Rn if the rank of the Jacobi matrix of the mapping at that point is less 

than min{ m, n }, that is, smaller than the maximum possible value it can 

have. 

In particular, if n=1, the point Xo is critical if condition holds,  

that is, all the partial derivatives of the function /: U(xo)-» R vanish. 

The critical points of real-valued functions are also known the stationary 

points of these functions. 
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After the critical points of a function have been found by solving the 

system, the subsequent analysis to determine whether they are extrema 

or not can often be carried out using Taylor's formula and the following 

sufficient conditions for the presence or absence of an extremum 

provided by that formula. 

Theorem. Let f : U(xo)-» R be a function of class C^(U(xo);R)de- 

fined in a neighborhood U(xo)C Rm of the point xo=(xj, ...,x™)G Rm,  

and Let xo be a critical point of the function f. 

If in the Taylor expansion of the function at the point xq 

f(xo + h\ ...,x^ + hm) 

1 m <=p. f 

=  /(®o."-.®o*)+ 2! S datdx* +  

 

is positive-definite or negative-definite, then the point xo has a local 

extremum at xo, which is a strict local minimum if the quadratic form  

is positive-definite and a strict local maximum if it is negative definite 

lets both positive and negative values, then the function does not 

have an extremum at xq . 

Proof.  Let h 0 and xq + h G U(xq). Let us represent in the form where 

o(l)is infinitesimal as h  —» 0. It is clear from that the sign of the 

difference f(xo + h) — f(xo)is compLetely determined by the sign of the 

quantity in brackets. We now undertake to study this quantity. 

The vector e=(h1/\ \h\ \,...,hm/\ \h\\)obviously has norm 1. The 

quadratic form is continuous as a function h G Rm, and therefore 

its restriction to the unit sphere 5(0; 1)={ x G Rm| ||x||=1 } is also 

continuous on 5(0; 1). But the sphere 5 is a closed bounded subset in Rm, 

that is, it is compact. Consequently, the form has both a minimum point 

and a maximum point on 5, at which it lets respectively the values m and 

M. 
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If the form is positive-definite, then 0 < m < M, and there is 

a number 5 > 0 such that |o(l)| < m for \\h\\ < 5. Then for \\h\\ < 5 

the bracket on the right-hand side of is positive, and consequently 

f(xo + h) — f(xo)> 0 for 0 < \\h\\ < 6. Thus, in this case the point xo is a 

strict local minimum of the function. 

One can verify similarly that when the form is negative-definite,  

the function has a strict local maximum at the point xq.Thus Let em and 

eM be points of the unit sphere at which the form lets the values m and 

M respectively, and Let m < 0 < M.                          Setting h=tem, where 

t is a sufficiently small positive number(so small that Xo + tem <= 

U(xo)), we find that 

 /(x0 + tem)- f(xo)=^t2(m + o(l)), 

where o(l) —> 0 as t  —> 0. Starting at some time(that is, for all 

sufficiently small values of t), the quantity m+o(l)on the right-hand side 

of this equality will have the sign of m, that is, it will be negative. 

Consequently, the left-hand side will also be negative, Similarly, setting 

h=teM, we obtain 

f(xo + teM)- f(xo)=7y t2(M + o(l))  

and consequently for all sufficiently small t the difference f(xo + ^m) —  

/(#o)is positive. 

Thus, if the quadratic form lets both positive and negative 

values on the unit sphere, or, what is obviously equivalent, in Rm,   then 

in any neighborhood of the point xo there are both points where the value 

of the function is larger than f(xo)and points where the value is smaller 

than f(xo). Hence, in that case xo is not a local extremum of the function.  

We now make a number of remarks in connection with this theorem. 

Remark . Theorem says nothing about the case when the form is 

semi-definite, that is, nonpositive or nonnegative. It turns out that in this 

case the point can be an extremum, or it can not. This can be observen, in 

particular from the following example. 
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Example. Let us find the extrema of the function  /(#, y)=x4 + y4  — 2x2 

which is defined in R2. 

In accordance with the necessary conditions we write the system 

of equations 

= 4x3 - 4x=0, 

< 

^(x, y)=4y3=0,  

from which we find three critical points:(—1, 0), (0, 0), (1, 0). 

Since 

0(x, »)=12**-4,  0(x, »)=12!, 2,  

at the three critical points the quadratic form has respectively the form 

8(^)2, -A(h })2, 8(^)2 . 

That is, in all cases it is positive semi-definite or negative semi-definite. 

Theorem is not applicable, but since  /(#, y)=(x2  — l)2 + y4  — 1, it is 

obvious that the function f(x, y)has a strict minimum  —1(even a global 

minimum)at the points(—1, 0), and(1, 0), while there is no extremum 

at(0, 0), since for x=0 and y ^ 0, we have  /(0, y)=y4 > 0, and for y=0 and 

sufficiently small x ^ 0 we have  /(#, 0)=x4  — 2x2 < 0. 

Remark. After the quadratic form has been obtained, the study of 

its definiteness can be carried out using the Sylvester5 criterion. We 

recall 

m 

that by the Sylvester criterion, a quadratic form with symmetric 

ijj=i 

matrix 

( flu • * • aim ^ 
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\ ®ml ' ' ' ^mm J 

is positive-definite if and only if all its principal minors are positive; the 

form is negative-definite if and only if an <0 and the sign of the principal 

minor reverses each time its order increases by one. 

Example• Let us find the extrema of the function 

f(x, y)=xy\n(x2 + y2), 

except at the origin. 

which is defined everywhere in the plane 

Solving the system of equation 

~(x, y)=a: In(x2 + y2)+ ^ =0,  

„ ay xz + yz 

we find all the critical points of the function 

<0, ±1);(±1, 0);(± '±');(± -L T')Since the function is odd with respect to 

each of its arguments individually, the points(0, d=l)and(±1, 0)are 

obviously not extrema of the function. 

It is also clear that this function does not change its value when the signs 

of both variables x and y are changed. Thus by studying only one of the 

remaining critical points, for example, we be able t° draw 

conclusions on the nature of the others. 

Since local maxima of the function. This, however, could have been 

verified 

directly, by checking the definiteness of the corresponding quadratic 

form. 

For example, at the point( — ^==, ^==)the matrix of the quadratic form 

has the form from which it is clear that it is negative-definite. 

Remark . It should be kept in mind that we have given necessary 

conditions and sufficient conditions for an extremum of a function only 

at an interior point of its domain of definition. Thus in observeking the 

absolute maximum or minimum of a function, it is necessary to examine 

the boundary points of the domain of definition along with the critical 
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interior points, since the function can let       its maximal or minimal 

value at one of these boundary points. 

The general principles of studying noninterior extrema will be considered 

in more detail later(observe the section devoted to extrema with 

constraint). It is 

useful to keep in mind that in searching for minima and maxima one can 

use 

certain simple considerations connected with the nature of the problem 

along 

with the formal techniques, and sometimes even instead of them. For 

example,  

if a differentiate function being studied in Rm must have a minimum 

because 

of the nature of the problem and turns out to be unbounded above, then 

if the function has only one critical point, one can assert without further 

investigation that that point is the minimum.  

 

Example. Huygens problem. On the basis of the laws of conservation of 

energy and momentum of a closed mechanical system one can show by a 

simple computation that when two perfectly elastic balls having mass m\ 

and m2 and initial velocities v\ and V2 collide, their velocities after a 

central 

collision(when the velocities are directed along the line joining the 

centers) 

are determined by the relations 

„(mi - m2)ui + 2rri2V2 

vi= — 

mi + m2 

(m2 - mi)v2 + 2m\V\ 

mi + m2 

In particular, if a ball of mass M moving with velocity V strikes a 

motionless    ball of mass m, then the velocity v acquired by the latter can 

be found from the formula 
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V=2M V,   

m + M v 1 

from which one can observe that if 0 < m < M, then V < v < 2V. 

How can a significant part of the kinetic energy of a larger mass be com- 

municated to a body of small mass? To do this, for example, one can 

insert 

balls with intermediate masses between the balls of small and large mass: 

m < mi < m2 < • • • < mn < M. Let us compute(after Huygens)how the 

masses mi, m2, ..., mn should be chosen to that the body m will acquire 

maximum velocity after successive central collisions. 

In accordance with formula we obtain the following expression for 

the required velocity as a function of the variables mi, m2, ..., mn: 

v= ——   ^-2-+1V.  

m + mi mi + m2 mn_i + mn mn + M 

Thus Huygens' problem reduces to finding the maximum of the function 

mi mn M 

f{ m \,...,mn)= 

m + mi mn_i+mn mn + M 

The system of equations, which gives the necessary conditions for 

an interior extremum, reduces to the following system in the present 

case: 

m • m2  — ml=0, 

mi • ms  — m%=0, 

mn-1 ■ M -17%=0, 

from which it follows that the numbers m, mi, ..., mn, M form a 

geometric 

progression with ratio q equal to n+y /M /m. 
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The value of the velocity that results from this choice of masses is 

given by which agrees with if n=0. 

It is clear from physical considerations that formula gives the maximal            

value of the function. However, this can also be verified formally 

(without invoking the cumbersome second derivatives). 

We remark that it is clear from that if m  —> 0, then v  —>> 2n+1V. 

Thus the intermediate masses do indeed significantly increase the portion 

of 

the kinetic energy of the mass M that is transmitted to the small mass m. 

 

4.8 THE IMPLICIT FUNCTION 

THEOREM 

Statement of the Problem and Preliminary Considerations 

In this section we shall prove the implicit function theorem,  which is 

important both intrinsically and because of its numerous applications. 

Let us begin by explaining the problem. Suppose, for example, we have 

the relation 

x2+y2-1=0  

between the coordinates x, y of points in the plane M2. The set of all 

points 

of M2 satisfying this condition is the unit circle  

 

 



Notes 

116 

The presence of the relation shows that after fixing one of the 

coordinates, for example, x, we can no longer choose the second 

coordinate 

arbitrarily. Thus relation determines the dependence of y on x. We are 

interested in the question of the conditions under which the implicit 

relation 

can be solved as an explicit functional dependence y=y{ x). 

we find that 

y=±yjl -x2  

that is, to each value of x such that |x| < 1, there are actually two 

admissible 

values of y. In forming a functional relation y=y{ x)satisfying relation  

one cannot give preference to either of the values without invoking 

additional requirements. For example, the function y(x)that lets the 

value +a /1  — x2 at rational points of the closed interval [—1, 1] and the 

value 

—a /1  — x2 at irrational points obviously satisfies  

It is clear that one can create infinitely many functional relations 

satisfying by varying this example. 

The question whether the set defined in M2 by is the graph of a function                 

y=y(pc)obviously has a negative answer, since from the geometric 

point of view it is equivalent to the question whether it is possible to 

establish 

a one-to-one direct projection of a circle into a line. 

But observation suggests that nevertheless, in a neighbor- 

hood of a particular point(#o, 2 /o)the arc projects in a one-to-one 

manner 

into the x-axis, and that it can be represented uniquely as y=y(x), where 

x y(x)is a continuous function defined in a neighborhood of the point 

xo and assuming the value yo at xo- In this aspect, the only bad points 

are 

(—1, 0)and(1, 0), since no arc of the circle having them as interior points 

projects in a one-to-one manner into the x-axis. Even so, neighborhoods 
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of 

these points on the circle are well situated relative to the y-axis, and can 

be represented as the graph of a function x=x(y)that is continuous in a 

neighborhood of the point 0 and lets the value  —1 or 1 according as the 

arc in question contains the point(—1, 0)or(1, 0). 

How is it possible to find out analytically when a geometric locus of 

points 

defined by a relation of the type can be represented in the form of an 

explicit function y=y(x)or x=x{ y)in a neighborhood of a point  

on the locus? 

We shall discuss this question using the following, now familiar, method. 

We have a function F(x, y)=x2 + y2  — 1. The local behavior of this 

function 

in a neighborhood of a point is well described by its differential 

K(x0, yo)(x - ®o)+ Fy(XO, yo)(y - 2 /0),  

since 

F(x, y)=F(x0, 2 /o)+ K(xo, 2 /o)(« - x0)+ 

+ Fy(xo, 2 /0)(2/- 2 /o)+ o(\x - x0\ + \y~ 2 /o|) 

as(x, y)->•(x0, y0). 

If F(x0, yo)=0 and we are interested in the behavior of the level curve 

F(x, y)=0 

of the function in a neighborhood of the point we can judge that 

behavior from the position of the(tangent)line 

K(xo, Vo)(x - x0)+ Fy(x0, 2 /0X2/- 2 /o)=0 . 

If this line is situated so that its equation can be solved with respect to 

2 /, then, since the curve F{ x, y)=0 differs very little from this line in a 

neighborhood of the point we can hope that it also can be written 

in the form y=y(x)in some neighborhood of the point- 
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The same can be said about local solvability of F(x, y)=0 with respect 

to x. 

Writing for the specific relation, we obtain the following 

equation for the tangent line: 

x0(x - #0)+ 2 /0(2/ — 2 /o)=0 . 

This equation can always be solved for y when 2 /0 7^ 0, that is, at all 

points 

of the circle except(—1, 0)and(1, 0). It is solvable with respect to x 

at all points of the circle except(0, -1)and(0, 1). 

 

4.9 ELEMENTARY VERSION OF THE 

IMPLICIT FUNCTION THEOREM 

In this section we shall obtain the implicit function theorem by a very in- 

tuitive, but not very constructive method, one that is adapted only to the 

case of real-valued functions of real variables. The reader can become 

famil- 

iar with another method of obtaining this theorem, one that is in many 

ways 

preferable, and with a more detailed analysis is an elementary version of 

the implicit function theorem. 

Proposition. If the function F : U(xo, yo) —> K defined in a 

neighborhood 

U(xo, yo)of the point(xo, yo)<= R2 ^ siac /i that 

1° F e C^\U;R), where p> I,  

2° F(aj0, 2 /0)=0,  

3° Fy{ x0, yo)7^ 0,  

<= /&en <= /&ere exist a two-dimensional interval I=Ix x Iy where 

Ix={ x<= R| I a; - Zol < a }, = { y e K| |y - y0| <  /? }, 
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that is a neighborhood of the point(xo, yo)contained in U{ xo, yo), and a 

function f G C^p\lx\Iy)such that 

F(x, y)=0&y= /(x) 

for any point(x, y)G Ix x Iy and the derivative of the function y=f(x)at 

the points x G Ix can be computed from the formula 

f'(x)=-[F^xJix^-^F^xJix))] .  

Before taking up the proof, we shall give several possible reformulations 

of the conclusion, which should bring out the meaning of the relation 

itself. 

Proposition says that under hypotheses 1°, 2°, and 3° the portion of 

the set defined by the relation F{ x, y)=0 that belongs to the 

neighborhood 

Ix x Iy of the point(xo, 2 /o)1S the graph of a function /: Ix  —> Iy of 

class 

C<*\lx;Iy). 

In other words, one can say that inside the neighborhood I of the point 

(x0, yo)the equation F(x, y)=0 has a unique solution for y, and the 

function 

y= /(x)is that solution, that is, F(x,  /(«))=0 on Ix. 

It follows in turn from this that if y=f{ x)is a function defined on Ix that 

is known to satisfy the relation F(x, /(x))=0 on  /x,  /(xo)=yo, and this 

function is continuous at the point xo G Ix, then there exists a 

neighborhood 

Aclx of xo such that f(A)C Iy, and then  /(x)= /(x)for x G A. 

Without the assumption that the function /is continuous at the point 

xo and the condition f(xo)=yo, this last conclusion could turn out to be 

incorrect, as can be observen from the example of the circle already 

studied. 

Let us now prove Proposition. 

Proof Suppose for definiteness that Fy(xo, yo)> 0. Since F G C^l\U\ R),  

it follows that Fy(x, y)> 0 also in some neighborhood of(xo, 2 /o)- In 
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order 

to avoid introducing new notation, we can let without loss of generality 

that Fy(x, y)> 0 at every point of the original neighborhood U(xo, yo)- 

Moreover, shrinking the neighborhood t /(xo, 2 /o)if necessary, we can 

as- 

sume that it is a disk of radius r=2 /3 > 0 with center at(xq, yo)• 

Since Fy(x, y)> 0 in [ /, the function F(xo, y)is defined and 

monotonically 

increasing as a function of y on the closed interval yo  —(3 < y < yo +  

/?. 

Consequently,  

F(xo, y0 - 0)< F(x0, yo)=0 < F(x0, yo + P) 

By the continuity of the function F in [ /, there exists a positive number 

a < p such that the relations 

F(x, y0  —(3)<0 < F(x, y0 + 0) 

hold for \x  — xo\ < ot> 

We shall now show that the rectangle I=Ix x Iy, where 

Ix={ x € E| I a: - x0| < a }, Iy={ y G R| \y - y0)| < 0 }, 

is the required two-dimensional interval in which relation holds. 

For each x G Ix we fix the vertical closed interval with endpoints(x, yo  

— 

 /?), (x, yo +(3). Regarding F{ x, y)as a function of y on that closed 

interval,  

we obtain a strictly increasing continuous function that lets values of 

opposite sign at the endpoints of the interval. Consequently, for each x G 

ix,  

there is a unique point y{ x)G Iy such that F(x, ? /(x))=0. Setting 

y(x)=/(x)         . 

We now establish that /G C^p\lx\Iy). 
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We begin by showing that the function /is continuous at xo and that 

f(xo)=yo- This last equality obviously follows from the fact that for 

x=Xo 

there is a unique point y(xo)G Iy such that F(xo, y(xo))=0. At the same 

time, F(x0, 2 /o)=0, and so  /(x0)=yo- 

Given a number e, 0 < e <(3, we can repeat the proof of the existence 

of the function  /(x)and find a number 5, 0 < S < a such that in the two- 

dimensional interval I=Ix x Iy, where 

Ix={ xe R| |x - x0| < S }, iy={ y G R| \y - y0\ < e }, 

the relation 

(F(x, y)=0 in I)(y=f(x), x € Ix)  

holds with a new function /: Ix Iy. 

But Ix C  /x, Iy C Iy, and I C  /, and therefore it follows from that                           

/(x)= /(x)for x G Ix C Ix. We have thus verified that 

1 /0*0 - f(xo)l=1 /0*0 -yo\<<= for \x - Xol < <5- 

We have now established that the function /is continuous at the point 

xo- But any point(x, y)g I at which F(x, y)=0 can also be taken as 

the initial point of the construction, since conditions 2° and 3° hold at 

that 

point. Carrying out that construction inside the interval  /, we would once 

again arrive via at the corresponding part of the function /considered in a 

neighborhood of x. Hence the function /is continuous at x. Thus we 

have established that /G C(Ix;Iy). 

We shall now show that /G C^(Ix;Iy) 

Let the number Ax be such that                                                                                   

x + Ax G Ix. Let y=f(x)and y + Ay = 

f(x + Ax). Applying the mean-value theorem to the function F{ x, 

y)inside 

the interval I, we find that 

0=F{ x + Ax, f(x + Ax)) - F{ x, f(x)) = 
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= F(x + Ax, y + Ay)- F{ x, y)= 

= Fx(x + 6Ax, y + 6Ay)Ax + Fy(x + 6Ax, y + 6Ay)Ay(0 < 0 < 1), 

from which, taking account of the relation Fy(x, y)^ 0 in I, we obtain 

Ay F'x(x + 0Ax, y + OAy) 

Ax Fy(x + OAx, y + OAy) 

Since /G C(Ix;Iy), it follows that Ay  —> 0 as Ax  —> 0, and, taking 

account of the relation F G C^(U; R), as Ax  —> 0  

f'(x)=Fx(*, ?/) 

nx } F'{ x, y)' 

where y=f(x).  

By the theorem on continuity of composite functions that /G C^\lx;Iy). 

If F G C^2\U', R), the right-hand side  can be differentiated with                           

respect to x, and we find that 

r(x)=IK'X + Ky • f(x)]Fj - F'x[F^y + F^y ■ f'(x)} ^(g 84/) 

(■^3 /)2 

where Fx, Fy, Fxx, Fxy, and Fyy are all computed at the point(x, f(x)). 

Thus /G C{ Ix, Iy)if F G C^(U; R). Since the order of the derivatives 

of /on the right-hand side and so forth, is one less than 

the order on the left-hand side of the equality, we find by induction that 

/G C^(IX; Iy)if F G C(p\U; R) 

 

Example. Let us return to relation studied above, which defines a 

circle in R2, and verify Proposition on this example. 

In this case 

F(x, y)=x2 + y2 - 1, 

and it is obvious that F G C^°°^(R2;R). Next,  

Fx{ x, y)=2x, F'y{ x, y)=2y,  
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so that Fy(x, y)^ 0 if y ^ 0. Thus, by Proposition 1, for any point(#o, 

Vo)of 

this circle different from the points(—1, 0)and(1, 0)there is a 

neighborhood such that the arc of the circle contained in that 

neighborhood can be written 

in the form y= /(#). Direct computation confirms this, and f{ x)=\ /l  — 

x2 

or f(x)=-\ /l - x2. 

Next, by Proposition  

f(x0)=-F^V0\=-- • 

Fy(xo, yo)2 /o 

f'(x)="t^t=--, 

f(x)y 

and computation with it leads to the same result,  

 /•// \ 

 /(%o)= ,  

2 /o 

as computation from formula obtained from Proposition  

It is important to note that compute ff(x)without even having an explicit 

expression for the relation y= /(#), if only we know that f(xo)=yo•                   

The condition y$=f(xo)must be prescribed, however, in order                           

to distinguish the portion of the level curve 

F(x, y)=0 that we intend to describe in the form y=f(x). 

It is clear from the example of the circle that giving only the coordinate 

does not determine an arc of the circle, and only after fixing yo have we 

distinguished one of the two possible arcs in this case. 
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Check your Progress-1 

Discuss Differential Calculus Of Real-Valued Functions Of Several 

Variables 

________________________________________________________ 

________________________________________________________ 

________________________________________________________ 

Discuss Higher-Order Partial Derivatives 

_______________________________________________________ 

________________________________________________________ 

________________________________________________________ 

4.10 LET US SUM UP 

In this unit we have discussed the definition and example of The Basic 

Facts Of Differential Calculus Of Real-Valued Functions Of Several 

Variables, The Mean-Value Theorem, A Sufficient Condition For 

Differentiability Of A Function Of Several Variables, Higher-Order 

Partial Derivatives, Real-Valued Functions Of Several Variables, 

Taylor's Formula, Extrema Of Functions Of Several Variables, The 

Implicit Function Theorem, Elementary Version Of The Implicit 

Function Theorem 

4.11 KEYWORDS 

1. The Basic Facts Of Differential Calculus Of Real-Valued Functions Of 

Several Variables …The Mean-Value Theorem:    Let f : G -» R be a 

real-valued function defined in a region G C M.m 

2. A Sufficient Condition For Differentiability Of A Function Of Several 

Variables…. Let f : U(x)-» R be a function defined in a neighborhood 

U(x)C Mm of the point x=(x1, ..., xm). 

3. Higher-Order Partial Derivatives   If a function /: G R defined in a 

domain G C Rm has a partial derivative with respect to one of the 
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variables 

4. Real-Valued Functions Of Several Variables…. The function f : G -» 

R has partial derivatives. 

5. Taylor's Formula:  If the function f : U(x)-» R is defined and belongs 

to class 

C<n>(Cf(s). 

6. Extrema Of Functions Of Several Variables: One of the most 

important applications of differential calculus is its use in finding 

extrema of functions. 

4.12 QUESTIONS FOR REVIEW 

Explain Differential Calculus Of Real-Valued Functions Of Several 

Variables  

Explain Higher-Order Partial Derivatives 

4.13 ANSWERS TO CHECK YOUR 

PROGRESS 

Differential Calculus Of Real-Valued Functions Of Several Variables 

     (answer for Check your Progress-1 

Q) 

Higher-Order Partial Derivatives 

     (answer for Check your Progress-1 

Q) 

4.14 REFERENCES 

 Function of Variables 

 System of Equation 

 Elementary Variables 

 Calculus of Several Variables 

 Advance Calculus of Several Variables 
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UNIT - 5: TRANSITION TO THE CASE 

OF A RELATION 

STRUCTURE 

5.0 Objectives 

5.1 Introduction 

5.2 Transition To The Case Of A Relation  

5.3 The Implicit Function Theorem 

5.4 Some Corollaries of Implicit Function Theorem Inverse Function 

Theorem 

5.5 Differential Calculus In Several Variables 

5.6 Differential Calculus In Several Variables Functional Dependence 

5.7 Local Resolution of Diffeomorphism Into Composition of 

Elementary Ones 

5.8 Morse's Theorem 

5.9 Let Us Sum Up 

5.10 Keywords 

5.11 Questions For Review 

5.12 Answers To Check Your Progress 

5.13 References 

 

5.0 OBJECTIVES 

After studying this unit, you should be able to: 

Learn, Understand about Transition To The Case Of A Relation  

Learn, Understand about The Implicit Function Theorem 
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Learn, Understand about Some Corollaries Of The Implicit Function 

Theorem 

The Inverse Function Theorem 

Learn, Understand about Differential Calculus In Several Variables 

Learn, Understand about Differential Calculus In Several Variables 

Functional Dependence 

Learn, Understand about Local Resolution Of A Diffeomorphism Into A 

Composition Of Elementary Ones 

Learn, Understand about Morse's Theorem 

 

5.1 INTRODUCTION 

In mathematics advanced calculus whose aim is to provide a firm logical 

foundation of analysis of calculus and a course in linear algebra treats 

analysis in one variable & analysis in several variables 

Transition To The Case Of A Relation, The Implicit Function Theorem, 

Some Corollaries Of The Implicit Function Theorem, The Inverse 

Function Theorem, Differential Calculus In Several Variables, 

Differential Calculus In Several Variables Functional Dependence, Local 

Resolution Of A Diffeomorphism Into A Composition Of Elementary 

Ones, Morse's Theorem 

 

5.2 TRANSITION TO THE CASE OF A 

RELATION  

 

F(x1, ..., a?m, y)=0 

The following proposition is a a simple generalization of Proposition to 

the case of a relation F(xx, ..., xm, y)=0. 
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Proposition. If a function F : U  —> R defined in a neighborhod U C 

Rm+1 of the point(x0, yo)=(xb ■ • ■ > ^o1.2 /o)€ ®m+1 is such that 

1° FeC^(U -,R), p> 1,  

2° F(xo, j /o)=F{ x \,..., a#\ 2 /0)=0,  

3° Fy(xo, yo)=Fy(xl, ..., zg1, 2 /0)+ 0,  

 

then there exists an(m + 1)-dimensional interval I=I™ x l }j; where 

I™={ x=(x1, ..., xm)<= Rm| \xl - Xq| < ot% i=1, ...,m }, 

l\={ y <= R| \y-yo\ <  /? }, 

which is a neighborhood of the point(#o, 2 /o)contained in U, and a 

function  

f <= Iy)such that for any point(x, y)<= I™ x I1 

F(x1, ..., xm, y)=0= /(x1, ..., xm) 

and the partial derivatives of the function y <= fix1, ..., xm)at the points 

of Ix can be computed from the formula 

f<=(®)=-[^(®. /(®))]_1[^(®. /(®))] •  

Proo /. The proof of the existence of the interval  /m+1=I™ x Iy and the 

existence of the function y=f{ x)=fix1, ..., xm)and its continuity in I™ is 

a verbatim repetition of the corresponding part of the proof of 

Proposition with only a single change, which reduces to the fact that the 

symbol x must now be interpreted as(x1, ..., xm)and a as(a1, ..., am). 

If we now fix all the variables in the functions Fix1, ...,xm, y)and 

 /(x1, ..., xm)except xl and y, we have the hypotheses of Proposition  

where now the role of x is played by the variable x\ Formula follows 

from this. It is clear from this formula that <= C(I'™; I1)(i=1, ..., m),  

that is, /<= C^il™', !1). Reasoning as in the proof of Proposition we 

establish by induction that /<= C(p\l™', Iy)when F <= C^P\U; R). □ 
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Example. Let that the function F : G  —> R is defined in a domain 

G C Rm and belongs to the class C^(G;R); xo=(xq, ..., x^)<= G and 

jF(xo)=F(xJ, ... jXq1)=0. If xo is not a critical point of F, then at least 

one of the partial derivatives of F at xo is nonzero. Suppose, for example,  

that ^r(xo)^ 0. 

Then, by Proposition in some neighborhood of Xo the subset of Rm 

defined by the equation Fix1, ...,xm)=0 can be defined as the graph of 

a function xm= /(x1, ..., xm_1), defined in a neighborhood of the point 

(xq, ...,x^l_1)<= Rm_1 that is continuously differentiate in this 

neighborhood and such that  /(xj, ..., x™-1)=x^. 

Thus, in a neighborhood of a noncritical point xo of F the equation 

F(x1, ..., xm)=0 

defines an(m  — l)-dimensional surface. 

In particular, in the case of R3 the equation 

Fix, y, z)=0 

defines a two-dimensional surface in a neighborhood of a noncritical 

point ixo, yo, zo)satisfying the equation, which, when the condition 

§f(xo? 2 /o? ^o)7^ 0 holds, can be locally written in the form 

*=ffay). 

As we know, the equation of the plane tangent to the graph of this 

function at the point(xo, 2 /o?^o)has the form 

Z- Z0=x0, y0)(x - x0)+ x0, yo)(y ~ 2 /o)■ 

But by formula  

df(\- Fx(xo, yo, z0)df ^_ Fy(x0, yo, z0) 

8x [X0>V0)~ F'z{ x0, 2 /0)zo)' dy(*0'Vo)~ F'z{ x0, y0, z0)' 

and therefore the equation of the tangent plane can be rewritten as 

F'x{ xo, t /o, zo)(x - x0)+ Fy{ x0, 2 /0, z0)(y - 2 /0)+ Fz(x0, 2 /0, z0)(z - 

z0)=0, 

which is symmetric in the variables x, y, z. 
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Similarly, in the general case we obtain the equation 

m 

Y.F'Ax o)(xi-4)=0 

i= 1 

of the hyperplane in Rm tangent at the point=(xj, ..., x™)to the surface 

given by the equation F(xx, ..., xm)=0(naturally, under the assumptions 

that F(xo)=0 and that xo is a noncritical point of F). 

It can be observen from these equations that, given the Euclidean 

structure 

on Rm, one can assert that the vector 

dF dF 

sradF(l°)=(&r  

is orthogonal to the r-level surface F(x)=r of the function F at a    

corresponding point xo <= Rm. 

For example, for the function 

x^ z^ 

Fi*, v, *)=j + yw + f,  

defined in R3, the r-level is the empty set if r < 0, a single point if r=0,  

and the ellipsoid 

 

x2y2z2 

~2 + To + ~2  — T 

az bz cz 

if r > 0. If(xo, 2 /o?^o)is a point on this ellipsoid, then by what has been 

proved, the vector 

a t?( ^(2x° 2y° 2z°\ 
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grad F(xo, 2 /o, ^o)= -5-) 

is orthogonal to this ellipsoid at the point(xo, 2 /o?^o)? and the tangent 

plane 

to it at this point has the equation 

 

5.3 THE IMPLICIT FUNCTION 

THEOREM 

We now turn to the general case of a system of equations 

xo(x-xo), 2 /0(2 /-2 /0). Zo(z-Zo) 

= 0,  

a' b2 c* 

which, when we take account of the fact that the point(#o, Vo, zo)lies on 

the 

ellipsoid, can be rewritten as 

xox . VoV . z0z 

—2~ + ~U2~ + T=r ' 

az bz cz                                                                                           F\x\..., 

xm, y\...yn)=0                                                                                     which 

we shall solve with respect to 2 /1, -- -,2 /n, that is, find a system of 

functional relations 

y1= /1(a:1, ...,xm) 

^yn=fn(x\..., xm),  

locally equivalent to the system  

For the sake of brevity, convenience in writing, and clarity of statement, 

Let us agree that x=(x1, ..., xm), y=(y1, ..., yn). We shall write the left 

hand side of the system as F(x, y), the system of equations as 

F(x, y)=0, and the mapping as y= /(x). 

If 
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x0 = , J /0=(2 /o»---»2 /o)» 

a=(a1, ..., am),(3=( /J1, ..., /T), 

the notation \x  — xo\ < a or \y  — yo\ <(3 will mean that \x%  — Xq| < 

a1 

(i=1, ..., m)or \y]  — y30\ <(3j(j=1, ..., n)respectively. 

We next set 

dFn 

V dy1 dyn J 

We remark that the matrix Fy(x, y)is square and hence invertible if and 

only if its determinant is nonzero. In the case n=1, it reduces to a single 

element, and in that case the invertibility of Fy(x, y)is equivalent to the 

condition that that single element is nonzero. As usual, we shall denote 

the 

matrix inverse to Fy(x, y)by [Fy(x, y)] . 

We now state the main result of the present section. 

Theorem.(Implicit function theorem). If the mapping F : U Rn de- 

fined in a neighborhood U of the point(#o, 2 /o)^ Mm+n is such that 

1° Fe C^(U', Rn), p> 1,  

2° F(xo, yo)=0,  

3° Fy(xo, yo)is an invertible matrix,  

then there exists an(m + n)-dimensional interval I=I™ x I™ C U, where 

I™={ x g Mm| \x - x0\ < a }, = { y e Rn| |y - y0\ <  /? }, 

and a mapping f e(/™; I™)such that 

F(x, y)=0^y=f(x) 

for any point(x, y)G I™ x Iy and 

f'{ x)=-[F^xJix^y'lF^xJix))]  

Proof The proof of the theorem will rely on Proposition and the 

elementary properties of determinants. We shall break it into stages, 
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reasoning by 

induction. For n=l, the theorem is the same as Proposition and is 

therefore true. 

Suppose the theorem is true for dimension n  — 1. We shall show that it 

is 

then valid for dimension n. 

a)By hypothesis 3°, the determinant of the matrix is nonzero at 

the point(xo, t /o)^ Mm+n and hence in some neighborhood of the point 

(#o?2 /o)- Consequently at least one element of the last row of this 

matrix is 

nonzero. Up to a change in the notation, we can let that the element 

dFn . 

—— is nonzero. 

dyn 

Then applying Proposition to the relation 

Fn(x1, ...,xm, y1, ..., yn)=0, 

we find an interval Im+n=(J™ x  /™-1)x J* c U and a function /e 

CW(7™ x Iy-^Jy)such that 

(Fn(a:\..., xm, y1, ..., yn)= 0 in  /m+n) 

^(yn=fix1, ..., xm, yx, ...,yra_1), 

Substituting the resulting expression yn=f(x, y1, ..., yn_1)for the 

variable yn in the first n  — 1 equations of(8.90), we obtain n  — 1 

relations 

^(x1, ...,xm, y1, ..., j /n_1):= _ 

= F1(x1, ...,xm, y1, ...,yn~1,  /(x1, ...,xm, y1, ...,yn~1))=0, 

<7n 1(x1, ..., xm, y1, ..., yn *):= _ 

= Fn-1(x1, ..., xm, y1, ..., yn-1J(x1, ..., xm, y1, ..., yn-1))=0 . 

It is clear that € C^(I™ x 7™_1;1R)(t=1, ..., n - 1), and 
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^(4, -- -,x^ -,yo, ..., yo~1)=0 1), 

since  /(®J, ..., xg1, yj, ..., y%_1)=y% and Fi(x0, yo)=0(i=1, ..., n). 

By definition of the functions $k(k=1, ..., n  — 1),  

Qpk Qpk Qf 

= + (i, k=l, ..., n-l) 

Qyl Qyl QyU Qyl 

Further setting 

*n(x1, ..., *m, y1, ..., yn-1):= 

= Fn(x1, ..., xm, y\..., yn-\f(x1, ..., xm, y1, ..., yn-1)), 

we find by that <Pn=0 in its domain of definition, and therefore 

d$n dFn dFn df 

= + = o(i=1, ..., n - 1). 

dyl Qyl QyU Qyl 

Taking account of relations the properties of determinants                               

we can now observe that the determinant of the matrix  

equals the determinant of the matrixF1 dF1 df dF1 \+ 3 * 

dy1 dyn dy1 dyn_1 dyn dyn_1 dy 

Since I™ 1 c I™ \ and J™ c J™, substituting Z1, ..., /72 1 from 

in place of the corresponding variables in the function 

Vn=f(x1, ..., xm, y1, ..., yn~1) 

we obtain a relation 

yn=fn(x1, ..., xm) 

between yn and(x1, ..., xm). 

We now show that the system 

' y1=f1(x1, ...xm), 
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<   xel? . 

, yn= /n(xV.., xm),  

which defines a mapping /<= C^( /™; J™), where I™=Iy~x x /*, is 

equivalent to the system of equations in the neighborhood  /m+n=I™ x 

I™.  

In fact, inside  /m+n=(J™ x  /^_1)x J* we began by replacing 

the last equation of the original system with the equality yn = 

f(x, y1, ..., yn_1), which is equivalent to it by virtue From the 

second system so obtained, we passed to a third system equivalent       to 

it by 

replacing the variable yn in the first n  — 1 equations with  /(#, y1, ..., 

yn_1). We then replaced the first n  — 1 equations of the third system 

inside I™ x Iy~l C /-X Iy~l with relations which are equivalent to them. 

In that way, we obtained a fourth system, after which we passed to the 

final system which is equivalent to it inside I™ x J™-1 x I*= /m+n? by 

replacing the variables y1, ..., yn_1 with their expressions in the last 

equation yn= /(x1, ..., xm, y1, ..., yn_1)of the fourth system, obtaining 

as the last equation. 

To compLete the proof of the theorem it remains only to verify formula 

Since the systems are equivalent in the neighborhood 

I™ x Iy of the point(xo, yo), it follows that 

F(x, f(x))=o, iixel™. 

In coordinates this means that in the domain I™ 

Fk(x\..., xm, f\x\..., xm), ..., fn(x\ ...,xm))=0 

(k = .(8.104) 

Since /€ C(p'( /™; /™)and F 6 C^V\U;R"), wherep > 1, it follows that 

G <=(p)( /™; Rn)an(j)differentiating the identity we obtain 

+ (*-I  

J=1 

Relations are obviously equivalent to the single matrix equality 
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K(x, y)+ Fy(x> v)• f'(x)=0 > 

in which y= /(x). 

Taking account of the invertibility of the matrix F'y{ x, y)in a   

neighborhood of the point(xq, 2 /0)> we find by this equality that 

f'{ x)= ,  

and the theorem is compLetely proved. 

The solution of this problem gives another proof of the fundamental 

theorem of this section, perhaps less intuitive and constructive than the 

one given above, but shorter. Suppose the hypotheses of the implicit 

function theorem are satisfied, and 

Let 

^,(dFl dFi \,, 

Fy^v)=W, -", dr){ x, v) 

be the ith row of the matrix Fy(x, y). 

Show that the determinant of the matrix formed from the vectors Fy(xi, 

yi)is nonzero if all the points(xi, yi)(i=l, ..., n)lie in some sufficiently 

small neighborhood U=I™ x Iy of(xo, yo). Show that, if for x <= I™ 

there are points 2 /1, 2 /2 <= Iy such that F(x, yi)=0 

and F(x, 2 /2)=0, then for each i G { 1, ..., n)there is a point(x, y{)lying 

on the closed interval with endpoints(x, 2 /1)and(x, 2 /2)such that 

Fi(x>y*)(y2 -2 /i)=0(«=i, ..., n). Show that this implies that 2 /1 =2 /2? 

that is, if the implicit function /: I™ -» Iy exists, it is unique. Show that if 

the open ball B(yo; r)is contained in J™, then F(xo, y)^ 0 for ||2/ — 2 

/o11= r > 0.  

The function ||F(xo, 2/)lliri continuous and has a positive minimum value 

p on the sphere ||2/ — 2 /o||r^=r. 

There exists S > 0 such that for ||x  — xo||r™ < S we have 

||F(a:, j/)||Rn > i /i, if \\y - yolk"=r, 

\\F(x, y)\ \ln <, if y=y0 . 
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For any fixed x such that ||x  — xo|| < S the function ||F(x, 2/)||r^ attains a 

minimum at some interior point y=f(x)of the open ball \\y  — 2 /0 Hr™ < 

r, and since the matrix F^x, /(x)^ is invertible, it follows that F^x, 

/(x)^=0. This establishes the existence of the implicit function      /: 

B(xo;S)-> B(yo;r). 

If Ay=f(x + Ax)-  /(x), then 

Ay =■ [F^]Ax, 

where F'y is the matrix whose rows are the vectors Fy(xi, yi), (i=1, ..., n), 

(xj, y{)being a point on the closed interval with endpoints(x, y)and(x -f 

Ax, y -f Ay). The symbol F'x has a similar meaning.  

Show that this relation implies that the function y=f(x)is continuous. 

Show that 

f'(x)=- [.Fy(x,  /(a:))] •(x,  /(a:))]  

"If f(x, y, z)=0, then ff - - ff=-1." 

Give a precise meaning to this statement. 

Verify that it holds in the example of Clapeyron's ideal gas equation 

P'V ♦ 

———=const 

T 

and in the general case of a function of three variables. 

Write the analogous statement for the relation  /(a?1, ...,#m)=0 among m 

variables. Verify that it is correct. 

Show that the roots of the equation 

zn + c\zn~1 H b Cn=0 

are smooth functions of the coefficients, at least when they are all 

distinct. 
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5.4 SOME COROLLARIES OF THE 

IMPLICIT FUNCTION THEOREM 

THE INVERSE FUNCTION THEOREM 

Definition. A mapping /: U -» V, where U and V are open subsets       of 

Mm, is a -diffeomorphism or a diffeomorphism of smoothness p 

(P=0, 1, ...), if 

i )fecv)(u -,vy,  

/is a bijection; 

f-1 eC<*\V;U). 

A -diffeomorphism is known a homeomorphism. 

As a rule, in this book we shall consider only the smooth case, that is,  

the case p G N or p=oo. 

The basic idea of the following frequently used theorem is that if the 

differential of a mapping is invertible at a point, then the mapping itself 

is invertible in some neighborhood of the point. 

Theorem.(Inverse function theorem). If a mapping f : G -» Mm of a 

domain G C Mm is such that 

1°  /€C, W(G;Rm), p> l,  

2° 2 /o=fix0)at x0 e G,  

3° fix0)is invertible,  

then there exists a neighborhood U(xo)C G of xq and a neighborhood 

V(yo)of yo such that f : U(xo)-» V(yo)is a -diffeomorphism. Moreover, if 

x G U(xo)and y=f(x)G V(yo), then 

(/1)'(2/)=(fix)) 1 

Proof. We rewrite the relation y=f(x)in the form 

F(x, y)=f(x)-y=0.  
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The function F(x, y)=f(x) — y is defined for x G G and y G Mm, that is 

it is defined in the neighborhood G x Mm of the point(xq, yo)G Mm x 

Mm. 

We wish to solve with respect to x in some neighborhood of 

(xoiVo)- By hypotheses 1°, 2°, 3° of the theorem the mapping F(x, y)has 

the property that 

F€Cw(Gxr;r), P> i,  

F(x0, yo)=0,  

K(xo, Vo)=f'(xo)is invertible. 

By the implicit function theorem there exist a neighborhood Ix x Iy of 

(#Oj2 /o)and a mapping g G C(p\ly; Ix)such that 

f(x)- y=0 ^ x=g(y)  

for any point(x, y)G Ix x Iy and 

g'iv)=- [K(x>y)]_1 y)] ■ 

In the present case 

F'x{ x, y)=f'{ x), Fy(x, y)= —E, 

where E is the identity matrix; therefore 

g\y)=( /'(s))"1 •  

If we set V  — Iy and U=^(V), relation shows that the mappings 

/: U  —V and g : V -» U are mutually inverse, that is, g= /-1 on V. 

Since V=Iy, it follows that V is a neighborhood of yo- This means that 

under hypotheses 1°, 2°, and 3° the image yo=f(xo)of xo G G, which is 

an interior point of G, is an interior point of the image  /(G)of G. By 

formula the matrix g'{ yo)is invertible. Therefore the mapping g : V U 

has properties 1°, 2°, and 3° relative to the domain V and the point yo G 

V.  

Hence by what has already been proved xo=g(yo)is an interior point of 

U=g(V). 



Notes 

140 

Since by hypotheses 1°, 2°, and 3° obviously hold at any point 

y G V, any point x=g(y)is an interior point of U. Thus U is an open(and 

obviously even connected)neighborhood of xo G Mm. 

We have now verified that the mapping /: U -» V satisfies all the 

conditions. The inverse function theorem is very often used in converting 

from one coordinate system to another. The simplest version of such a 

change of coordinates was studied in analytic geometry and linear 

algebra and has the form 

 

 

or, in compact notation, yi=a\xl.  

This linear transformation A : R™  —R™ 

has an inverse A~x : R™ -» R™ defined on the entire space R™ if and 

only if the matrix(a^)is invertible, that is, det(a^)^ 0. 

The inverse function theorem is a local version of this proposition, based 

on the fact that in a neighborhood of a point a smooth mapping behaves 

approximately like its differential at the point. 

 

Example. Polar coordinates. The mapping /: R+ -» R2 of the half-plane 

R%={(p, (p)G R2\ p > 0 } onto the plane R2 defined by the formula 

x=p cos p, 

y=psmp, 

The Jacobian of this mapping, as can be easily computed, is p, that is,  

it is nonzero in a neighborhood of any point(p, p), where p > 0. Therefore 

formulas are locally invertible and hence locally the numbers p and p can 

be taken as new coordinates of the point previously determined by the 

Cartesian coordinates x and y. 

The coordinates(p, p)are a well known system of curvilinear coordinates 

on the plane - polar coordinates. Their geometric interpretation is shown 
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0 x 

in Figure. We note that by the periodicity         of the functions cos<^ and 

sin<^ the mapping is only locally a diffeomorphism when p > 0; it is not 

bijective on the entire plane.   That is the reason that the change from 

Cartesian to polar      coordinates always involves a choice of a branch of 

the argument p 

(that is, an indication of its range of variation). 

Y 7r 2 

 

 

 

 Polar coordinates(p, ip)in three-dimensional space M3 are known 

spherical coordinates. They are connected with Cartesian coordinates by 

the formulas 

z=pcosip, 

y=psmipsirup,  

x=p sin ^ cos(p . 

The geometric meaning of the parameters p. 

 

 

The Jacobian of the mapping is p2sinip, and so by Theorem  

the mapping is invertible in a neighborhood of each point(p, ip, p)at 

which 

p > 0 and sin ip ^ 0. 

The sets where p=const, (p=const, or ip=const in(x, y, z)-space 

obviously correspond to a spherical surface(a sphere of radius p), a 
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halfplane passing through the z-axis, and the surface of a cone whose 

axis is the z-axis respectively. 

Thus in passing from coordinates(x, y, z)to coordinates(p, i^,(p), for 

example, the spherical surface and the conical surface are flattened; they 

correspond to pieces of the planes p=const and ip=const respectively. We 

observed a similar phenomenon in the two dimensional case, where an 

arc of a circle in the(x, y)-plane corresponded to a closed interval on the 

line in the plane with coordinates(p,(p). Please note that this is a local 

straightening. 

In the m-dimensional case polar coordinates are introduced by the 

relations 

x1=pcos<<=i, 

x2=p sin ipi cos ip2 ? 

xm"i=psin^i sin^?2 • • • sin(^m_2 cos(^m_i, 

x171=p sin <pi sin(p2 • • • sin(pm-2 sin(pm_ i . 

and by Theorem it is also locally invertible everywhere where this 

Jacobian is nonzero. 

Example. The general idea of local rectification of curves. New 

coordinates are usually introduced for the purpose of simplifying the 

analytic expression for the objects that occur in a problem and making 

them easier to visualize in the new notation. 

Suppose for example, a curve in the plane R2 is defined by the equation 

F(x, y)=0 . 

Let that F is a smooth function, that the point(xo, yo)lies on the curve, 

that is, F(xo, yo) — 0, and that this point is not a critical point of F. For 

example, suppose Fy(x, y)^ 0. 

Let us try to choose coordinates <= & 77, so that in these coordinates a 

closed interval of a coordinate line, for example, the line rj=0, 

corresponds to an arc of this curve. 

We set 
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<==X - x0, T]=F(x, y). 

The Jacobi matrix 

 

of this transformation has as its determinant the number F'y(x, y), which 

by assumption is nonzero at(xo, yo)- Then by Theorem this mapping is a 

diffeomorphism of a neighborhood of(xo, yo)onto a neighborhood of the 

point(<=, ??)=(0, 0). Hence, inside this neighborhood, the numbers <= & 

77 can be taken as new coordinates of points lying in a neighborhood 

of(xq, t /o)- 

In the new coordinates, the curve obviously has the equation 77=0, and 

in this sense we have indeed achieved a local rectification. 

 

 

Local Reduction of a Smooth Mapping to Canonical Form 

In this subsection we shall consider only one question of this type. To be 

specific, we shall exhibit a canonical form to which one can locally 

reduce any smooth mapping of constant rank by means of a suitable 

choice of coordinates. 

We recall that the rank of a mapping /: U -» W1 of a domain U C Mm at 

a point x G U is the rank of the linear transformation tangent to it at the 

point, that is, the rank of the matrix f'(x). The rank of a mapping at a 

point is usually denoted rank /(x). 

 

Theorem.(The rank theorem). Let f : U -» Mn be a mapping defined in a 

neighborhood U C Mm of a point xq G Mm. If f G C^p\U;Rn), p > 1, 

and the mapping f has the same rank k at every point x G U, then there 
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exist neighborhoods 0(xo)of xq and O(yo)of yo=f(xo)and 

diffeomorphisms 

u=(p(x), v=tp(y)of those neighborhoods, of class C^p\ such that the 

mapping v=o f o has the coordinate representation 

(u1, ...,uk, ...,um) — u i—y v  —(v1, ..., vn)=(u1, ...,^, 0, ...,0) 

in the neighborhood 0(uf)=tp(0(xo)) of uq=^>{ xf). 

In other words, the theorem asserts(observe Fig. 8.8)that one can choose 

coordinates(u1, ..., um)in place of(x1, ..., xm)and(v1, ..., vn)in place 

of(y1, ...,yn)in such a way that locally the mapping has the form in the 

new coordinates, that is, the canonical form for a linear transformation of 

rank k. 

 

O(uo) 0(v 0)_ 

 

 

 

5.5 DIFFERENTIAL CALCULUS IN 

SEVERAL VARIABLES 

 

We write the coordinate representation 

y6=f1(x1, ..., xm), 

yk=fk(x\..., xm), 

yk+1= /fe+i(xi;,  

yn=fn(x\..., xm) 
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of the mapping /: U -» M™, which is defined in a neighborhood of the 

point  

xq G M™. In order to avoid relabeling the coordinates and the 

neighborhood we shall let that at every point x € U, the principal minor 

of order k  the upper left corner of the matrix f'(x)is nonzero. 

Let us consider the mapping defined in a neighborhood U of xq by the 

equalities 

u1=(f1(x1, ..., xm)=f1(x1, ..., xm) 

<pk(x\..., xm)=fk(x1, ..., xm),  

y>k+1{ x1, ..., xm)=xk+1, 

um=y>m(x1, ..., xm)=xm . 

The Jacobi matrix of this mapping has the form 

df1 df1 \ 

fdfl 

dx1 

dfk dfk 

dx1 dxk 

dxk+l 

dx71 

and by assumption its determinant is nonzero in U. 

By the inverse function theorem, the mapping u=<p(x)is a 

diffeomorphism of smoothness p of some neighborhood 0(xo)C U of xq 

onto a neighborhood O(uo)=(p(0(xo)) of uo=<p(xo). 

y*=fnQ(p-l^ul^ ^um>)= m,um). 

Since the mapping(p_1 : O(i^o)-> 0(xo)has maximal rank m at each 

point u G O(uo), and the mapping /: O(xo) has rank k at every point x 

G O(xo)? h follows, as is known from linear algebra, that the matrix 

g'(u)=f'{(p~l(u)){ p~l)(u)has rank k at every point u G 0{ uq). 
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Direct computation of the Jacobi matrix of the mapping(8.122)yields 

 / 

duk+1 

dum  / 

dgj 

 

Hence at each point u G 0(u$)we obtain -r—="(u)=0 for i=k +1, ..., m; 

ou% _ 

j -h 1, ..., n. Assuming that the neighborhood O(uo)is convex(which 

can be achieved by shrinking 0{ uq)to a ball with center at uq, for 

example)we can conclude from this that the functions gi, j=k + 1, ..., n, 

really are independent of the variables ukJrl, ..., um. 

After this decisive observation, we can rewrite the mapping as 

yk=uk, 

yk+1=gk+-i-{ ra1, ..., uk), 

yn=gn{ u1, ..., uk). 

At this point we can exhibit the mapping ip. We set 

v1=y1 =■■ vHy)> 

= yk =■ ipk(y),  

vk+1=yk+1 -gk+1(y1, -- -,yk)=■ ipk+1(y),  

vn=yn-gn(y1, ..., yk)=: ipn(y)■ 

It is clear from the construction of the functions gi(j=k +1, ..., n)that 

the mapping is defined in a neighborhood of yo and belongs to class C^ 

in that neighborhood. 

The Jacobi matrix of the mapping has the form 

dy1 
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dyk 

Its determinant equals 1, and so by Theorem 1 the mapping i /i is a      

diffeomorphism of smoothness p of some neighborhood O(yo)of yo G 

R™ onto a neighborhood 0(vq)=i)(0{ yo)) of vo G R™. 

Comparing relations, we observe that in a neighborhood 

O(uo)C O(uo)ofuo so small that g(0(uo)) C O(yo)> the mapping t /jo /o^-

1 : 

O(uo)-> M.y is a mapping of smoothness p from this neighborhood onto 

some neighborhood O(vo)C 0(vq)of vq G and that it has the canonical 

form 

vn=0. 

Setting p~l(O(uo))=0(xo)and o))=O(yo)> we obtain the 

neighborhoods of xq and yo whose existence is asserted in the theorem. 

The proof is now compLete. Theorem is obviously a local version of the 

corresponding theorem from linear algebra. 

In connection with the proof just given of Theorem we make the      

following remarks, which will be useful in what follows. 

Remark. If the rank of the mapping /: U -» Mn is n at every point of the 

original neighborhood U C Mm, then the point yo=f(xo), where Xo G U, 

is an interior point of f(U), that is, f(U)contains a neighborhood of this 

point. 

Proof. Indeed, from what was just proved, the mapping t /jo /o^-1 : 

O(uo)-»  

0(vo)has the form 

(u1, ...,un, ..., um)=u v=(v1, ..., vn)=(u1, ..., /un), 

in this case, and so the image of a neighborhood of uo=(f(xo)contains 

some neighborhood of vo=° /° y>~l(uo)- 

But the mappings(p : 0(xo)-> O(uo)and ip : O(yo)-> 0(vo)are 

diffeomorphisms, and therefore they map interior points to interior 

points. Writing the original mapping /as  /=V7"1 °(V7 ° /°(P~1)° we 
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conclude that yo=f(xo)is an interior point of the image of a neighborhood 

of xo 

Remark. If the rank of the mapping f : U -» W1 is k at every point of a 

neighborhood U and k < n, then in some neighborhood of xo G U C Mm 

the following n  — k relations hold: 

f(x\..., xm)=gi(f1(x\...>xm)>..., fk 

(i=k + l, ..., n) 

These relations are written under the assumption we have made that the 

principal minor of order k of the matrix f'(xo)is nonzero, that is, the rank 

k is realized on the set of functions Z1, ..., fk. Otherwise one can relabel 

the functions f1, ..., fn and again have this situation. 

 

5.6 DIFFERENTIAL CALCULUS IN 

SEVERAL VARIABLES FUNCTIONAL 

DEPENDENCE 

Definition. A system of continuous functions f%(x)= ..., xm) 

(i  — l, ..., n)is functionally independent in a neighborhood of a point 

xq=(xj, .. •, Xq1)if for any continuous function F(y)=F(y1, ..., yn)defined 

in a neighborhood of y0=(j /J, ..., y%)=(f1(x0), fn(x 0))=f(x0),  

the relation 

F(f1(x\..., xm), ..., fn(x\..., xm))=0 

is possible at all points of a neighborhood of xq only when F(y1, ..., 

yn)=0 

in a neighborhood of y®. 

The linear independence studied in algebra is independence with respect 

to linear relations 

F(y1, ..., yn)=X1y1 + --- + Xnyn . 

If a system is not functionally independent, it is said to be functionally 

dependent When vectors are linearly dependent, one of them obviously is 
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a linear combination of the others. A similar situation holds in the 

relation of functional dependence of a system of smooth functions. 

Proposition. If a system fl(xl, ..., xm)(i=1, ..., n)of smooth  

functions defined on a neighborhood U(xo)of the point xq g Mm is such 

that the rank of the matrix 

( df1 Of1 \ 

dx1 dxm 

dfn dfn 

\ dx1 dxm ) 

is equal to the same number k at every point x g U, then 

when k=n, the system is functionally independent in a neighborhood 

ofx0; 

when k < n, there exist a neighborhood of x$ and k functions of the 

system, say f1, ..., fk such that the other n  — k functions can be 

represented 

as 

f(x\. .., xm)=gi(f1(x1, .. ., xm), fk(x\.. ., xm)) 

in this neighborhood, where gt(y1, ..., yk), (i=k + 1, ..., n)are smooth 

functions defined in a neighborhood of yo=(f1(xo), ..., fn(xo)) and 

depending only on k coordinates of the variable point y=(y1, ..., yn). 

Proof In fact, if k=n, then by Remark 1 after the rank theorem, the image 

of a neighborhood of the point xq under the mapping 

can hold in a neighborhood of xq only if 

F(y\..., yn)= 0 

in a neighborhood of yo> This proves assertion. 

If k < n and the rank k of the mapping is realized on the functions Z1, ..., 

/*^ then by Remark after the rank theorem, there exists a 

neighborhood of yo=f(xo)and n  — k functions gl(y)=gt(y1, ..., yk) 
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(i=k -b 1, ...,n), defined on that neighborhood, having the same order 

of smoothness as the functions of the original system, and such that 

relations hold in some neighborhood of xq.  

We have now shown that if k < n there exist n  — k special functions 

Fl(y) — y%— 9l(yl, • • •> yk)(®  — k + 1, ..., n)that establish the 

relations between the functions of the system f1, ..., fk, ..., fn in a 

neighborhood of the point xq. 

 

5.7 LOCAL RESOLUTION OF A 

DIFFEOMORPHISM INTO A 

COMPOSITION OF ELEMENTARY 

ONES 

In this subsection we shall show how, using the inverse function 

theorem, one can represent a diffeomorphic mapping locally as a 

composition of diffeomorphisms, each of which changes only one 

coordinate. 

Definition. A diffeomorphism g : U  —» Mm of an open set U C Mm 

will be known elementary if its coordinate representation is 

yi=x*, i e , i¥=j,  

yj=gj(, 

that is, under the diffeomorphism g : U  —» Rm only one coordinate of 

the point being mapped is changed. 

Proposition. If f : G  —> Mm is a diffeomorphism of an open set G C 

Mm, then for any point xq G G there is a neighborhood of the point in 

which the representation f=g\ o • • • o gn holds, where g \,...,gn are 

elementary diffeomorphisms. 

Proof We shall verify this by induction. 

If the original mapping /is itself elementary, the proposition holds 

trivially for it. 
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Let that the proposition holds for diffeomorphisms that alter at most 

(k  — 1)coordinates, where k  — l<n. Now consider a diffeomorphism /: 

G -» 

Mm that alters k coordinates: 

1=p(x1, ..., xm) 

ym=x71 

We have letd that it is the first k coordinates that are changed, which can 

be achieved by linear changes of variable. Hence this assumption causes 

no loss in generality. 

Since /is a diffeomorphism, its Jacobi matrix f'(x)is nondegenerate at 

each point, for 

( /_1)'( /(^))=[ /'(*)]' 

Let us fix xq G G and compute the determinant of f\xo): 

minor of order A:  — 1 is nonzero. Now consider the auxiliary mapping 

g : G  —» 

Mm defined by the equalities 

u1= /1(a;1, ..., a;m), 

, k-1 

uk=xk 

u"v=x" 

Since the Jacobian 

df1 df1 ; df1 

&e 

the mapping g : G -> Mm is nonzero at xq G G, the mapping g is a 

diffeomorphism in some neighborhood of xq. 

Then, in some neighborhood of u$=g{ xo)the mapping inverse to g,  

x=g~l{ u), is defined, making it possible to introduce new coordinates 

(u1, ..., um)in a neighborhood of x$. 
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Let h=f o g~l. In other words, the mapping y=h(u)is the mapping 

y=f(x)written in ^-coordinates. The mapping  /i, being the composition of 

diffeomorphisms, is a diffeomorphism of some neighborhood of uq. 

Its coordinate expression obviously has the form 

V =f °9(u)=u, 

yk 1=fk 1og l(u)=uk x,  

yk=fk°, 

yk+l=Uk+l, 

y171=Um, 

that is, h is an elementary diffeomorphism. 

But  /=h o g, and by the induction hypothesis the mapping g defined can 

be resolved into a composition of elementary diffeomorphisms. 

Thus, the diffeomorphism  /, which alters k coordinates, can also be 

resolved into a composition of elementary diffeomorphisms in a 

neighborhood of x$, which compLetes the induction.  

 

5.8 MORSE'S THEOREM 

This same circle of ideas contains an intrinsically beautiful Theorem of 

Morseon the local reduction of smooth real-valued functions to canonical 

form in a neighborhood of a nondegenerate critical point. This Theorem 

is also important in applications. 

Definition. Let xq be a critical point of the function /E C^2\U\ R) 

defined in a neighborhood U of this point. 

The critical point xq is a nondegenerate critical point of f if the Hessian 

d2 f 

of the function at that point(that is, the matrix _ .0 .(x0)formed from 

UX%Ox3 
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the second-order partial derivatives)has a nonzero determinant. 

If xq is a critical point of the function, that is, ff(xo)=0, then by Taylor's 

formula 

f(x)-f(x0)=1 dx*dxi(a?o)(gi-4)(^-^)+ o(lk-»o||2)• 

' id 

Morse's Theorem asserts that one can make a local change of coordinates 

x=g(y)such that the function will have the form 

(/o g){ y)-  /(so)=~(y1)2 (yk)2 +(yk+1)2 + • • • +(ym)2 

when expressed in y-coordinates. 

If the remainder term o(\\x  — xo\\2)were not present on the right-hand 

side of Eq. that is, the difference f(x) — f(xo)were a simple quadratic 

form, then, as is known from algebra, it could be brought into the 

indicated canonical form by a linear transformation. Thus the assertion 

we are about to prove is a local version of the theorem on reduction of a 

quadratic form to canonical form. The proof will use the idea of the proof 

of this algebraic theorem. We shall also rely on the inverse function 

theorem and the following proposition. 

Hadamard's Theorem. Let  /:[ /—> R be a function of class C^P\U;M),  

p > 1, defined in a convex neighborhood U of the point 0=(0, ..., 0)E Rm 

and such that  /(0)=0. Then there exist functions gi G R) 

(i=1, ..., m)such that the equality 

m 

fix1, ..., xm)=x'giix1, ..., xm)  

2=1 

holds in U, and gi{ 0)=J^r(0). 

Proof. Equality is essentially another useful expression for Taylor's 

formula with the integral form of the remainder term. It follows from the 

equalities 
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 /(*', . .., *»)= / a «=<=></gy*' ,  

0 i=1 0 

if we set 

l 

<=i(x\..., xm)=J ^{ txl, ... ^tx™)&t(i=l, ..., ra). 

o 

The fact that <fa(0)=J^r(0)(i=1, ..., m)is obvious, and it is also not 

difficult to verify that gi G C^p~^(U\ R). However, we shall not 

undertake the verification just now, since we shall later give a general 

rule for differentiating an integral depending on a parameter, from which 

the property we need for the functions gi will follow immediately. 

Thus, up to this verification, Hadamard's formula is proved.  

 

Morse's Theorem. If f : G  —> R is a function of class(G; R)defined on 

an open set G C Rm and Xo G G is a nondegenerate critical point of that 

function, then there exists a diffeomorphism g : V  —> U of some 

neighborhood of the origin 0 in Rm onto a neighborhood U of xo such 

that if ° 9)iv)=fixo)- [(y1)2 + • • • +(yfc)2] + [ivk+1)2 + • • • +(ym)2] for 

all y G V. 

Proof By linear changes of variable we can reduce the problem to the 

case when xo=0 and f(xo)=0, and from now on we shall let that these 

conditions hold. 

Since xo=0 is a critical point of  /, we have ^(0)=0 in formula  

(i=1, ..., m). Then, also by Hadamard's Theorem,  

m 

Qiix1, . . ■,Xm)=  

3=1 

where h^ are smooth functions in a neighborhood of 0 and consequently 



Notes 

155 

m 

f{ xl, ...,xm)=xtxjhij(x1, ...,xm).  

i, j=1 

By making the substitution hij=\{ hij-\-hji)if necessary, we can let 

that=hji. We remark also that, by the uniqueness of the Taylor expansion, 

the continuity of the functions h^ implies that        hij(0)= .(0)and 

ux uxJ 

hence the matrix(/^(0)) is nondegenerate. 

The function /has now been written in a manner that resembles a 

quadratic form, and we wish, so to speak, to reduce it to diagonal form. 

As in the classical case, we proceed by induction. 

Let that there exist coordinates ix1, ...,xxm in a neighborhood U\ of 0 G 

Mm, that is, a diffeomorphism x=(p(u), such that 

m 

if ° vOM  — i^1)2 ± • • • =t K"1)2 -f ^2 tfv? Hijfa1, ...,ixm) 

i, j=r 

in the coordinates ix1, ..., um, where r > 1 and H\j=Hji. 

We observe that relation holds for r=1, as one can observe from,        

where=hij. 

m 

By the hypothesis of the Theorem the quadratic form J2 xlx^hij(0)is 

i, 3=1 

nondegenerate, that is, det(fcij(O)) 7^ 0. The change of variable 

x=(p(u)is carried out by a diffeomorphism, so that det^'(O)7^ 0. But then 

the matrix 

m 
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of the quadratic form ±(u1)2 ± • • • ±(ur~1)2 + J2 utu^Hij(0)obtained 

from 

i, j=r 

the matrix { hij{ 0)) through right-multiplication by the matrix(p'(0)and 

left- 

multiplication by the transpose of y /(0)is also nondegenerate. 

Consequently,  

at least one of the numbers Hij(0)(hj=r, ...,ra)is nonzero. By a linear 

m 

change of variable we can bring the form ^2 u%vPHij{ Q)to diagonal 

form,  

i, j=r 

and so we can let that Hrr(0)7^ 0 in Eq.(8.133). By the continuity of the 

functions Hij(u)the inequality Hrr(u)7^ 0 will also hold in some 

neighborhood of u=0.   

Let us set ipiu1, ...,um)=yJ\Hrr{ u)\ . Then the function ip belongs to 

the class in some neighborhood U2 C U\ of u=0. We now change to 

coordinates(i;1, ..., vm)by the formulas 

<8-134> 

The Jacobian of the transformation at u=0 is obviously equal 

to V>(0)> that is, it is nonzero. Then by the inverse function theorem we 

can assert that in some neighborhood Us C U2 of u=0 the mapping 

v=ip(u)defined is a diffeomorphism of class C^(Us; Mm)and therefore 

the variables(i;1, ..., vm)can indeed serve as coordinates of points in Us-  

We now separate off in all terms 

m 

ururHrr(v }, ...,um)+ 2 ^ urv?Hrj{ v } -,... iUm),  

j=r+1 
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containing ur. In the expression for the sum of these terms we have 

used the fact that Hij=Hji. 

Comparing we observe that we can rewrite in the form 

±VTVr -(<= u'Hiriu1, . . ., Um))2 • 

rr i>r 

The ambiguous sign ± appears in front of vrvr because Hrr=±(V02> the 

positive sign being taken if Hrr > 0 and the negative sign if Hrr < 0. 

Thus, after the substitution v=ip(u), the expression becomes the 

equality 

r 

( /o [±(w1)2] + v'v7Hijiv1, ...,vm), 

2=1 i, j>r 

where Hij are new smooth functions that are symmetric with respect to 

the indices i and j. The mapping(poif;"1 is a diffeomorphism. Thus the 

induction from r  — 1 to r is now compLete, and Morse's Theorem is 

proved.  

 

Check your Progress-1 

Discuss Transition To The Case Of A Relation 

________________________________________________________ 

________________________________________________________ 

________________________________________________________ 

Discuss Morse’s Theorem 

_______________________________________________________ 

________________________________________________________ 
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5.9 LET US SUM UP 

In this unit we have discussed the definition and example of Transition 

To The Case Of A Relation, The Implicit Function Theorem, Some 

Corollaries Of The Implicit Function Theorem, The Inverse Function 

Theorem, Differential Calculus In Several Variables, Differential 

Calculus In Several Variables Functional Dependence, Local Resolution 

Of A Diffeomorphism Into A Composition Of Elementary Ones, Morse's 

Theorem 

 

5.10 KEYWORDS 

1. Transition To The Case Of A Relation:     The following proposition is 

a a simple generalization of Proposition to the case of a relation F(xx, ..., 

xm, y)=0 

2. Some Corollaries Of The Implicit Function Theorem   Definition. A 

mapping /: U -» V, where U and V are open subsets of Mm, is a -

diffeomorphism or a diffeomorphism of smoothness p (P=0, 1, ...) 

3.The Inverse Function Theorem:We write the coordinate representation 

y8=f1(x1, ..., xm) 

4. Differential Calculus In Several Variables Functional Dependence   

Definition. A system of continuous functions f%(x)= ..., xm) 

5. Morse's Theorem    This same circle of ideas contains an intrinsically 

beautiful Theorem of Morseon the local reduction of smooth real-valued 

functions to canonical form in a neighborhood of a nondegenerate critical 

point 
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5.11 QUESTIONS FOR REVIEW 

Explain Transition To The Case Of A Relation  

Explain Morse's Theorem 

 

5.12 ANSWERS TO CHECK YOUR 

PROGRESS 

Transition To The Case Of A Relation 

     (answer for Check your Progress-1 

Q) 

Morse's Theorem 

     (answer for Check your Progress-1 

Q) 

5.13 REFERENCES 

 Several Variables 

 Function of Variables 

 System of Equation 

 Function of Real Variables 

 Real Several Variables 

 Elementary Variables 
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UNIT - 6: TAYLOR'S THEOREM, 

MAXIMA AND MINIMA 

STRUCTURE 

6.0 Objectives 

6.1 Introduction 

6.2 Taylor's Theorem, Maxima And Minima 

6.3 Application To Maxima And Minima  

6.4 Surfaces In Rn And The Theory Of Extrema With Constraint 

6.5 The Tangent Space 

6.6 Differential Calculus In Several Variables  

6.7 Extrema With Constraint 

6.8 Surfaces In Rn And Constrained Extrema  

6.9 Some Geometric Images Connected With Functions Of Several 

Variables 

6.10 Let Us Sum Up 

6.11 Keywords 

6.12 Questions For Review 

6.13 Answers To Check Your Progress 

6.14 References 

6.0 OBJECTIVES 

After studying this unit, you should be able to: 

Learn, Understand about Taylor's Theorem, Maxima And Minima 

Learn, Understand about Application To Maxima And Minima  

Learn, Understand about Surfaces In Rn And The Theory Of Extrema 

With Constraint 
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Learn, Understand about The Tangent Space 

Learn, Understand about Differential Calculus In Several Variables  

Learn, Understand about Extrema With Constraint 

Learn, Understand about Surfaces In Rn And Constrained Extrema  

Learn, Understand about Some Geometric Images Connected With 

Functions Of Several Variables 

 

6.1 INTRODUCTION 

In mathematics advanced calculus whose aim is to provide a firm logical 

foundation of analysis of calculus and a course in linear algebra treats 

analysis in one variable & analysis in several variables 

Taylor's Theorem, Maxima And Minima, Application To Maxima 

And Minima, Surfaces In Rn And The Theory Of Extrema With 

Constraint, The Tangent Space, Differential Calculus In Several 

Variables, Extrema With Constraint, Surfaces In Rn And Constrained 

Extrema, Some Geometric Images Connected With Functions Of Several 

Variables 

 

6.2 TAYLOR'S THEOREM, MAXIMA & 

MINIMA 

TAYLOR'S THEOREM  

This is somewhat complicated, and the longest proof in 

either content here to carry the expansion out one more 

term than  thus adding a third derivative and discussing 

the resulting expression. It is 

f(x)= f(xo)+Df(xo)(x - Xo) + 2 D
2
f(xo)(x - xo, x - xo)  

+ 3 D
3
f(c)(x - xo, x - xo, x - Xo) 
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The last term with D
3
f(c), is known the "remainder 

term". Here c is a point on the line segment between xo 

and x. From the last term that D
3
f(c):  R

n
 X R

n
 X R

n
 ! R. 

There are 3
n  

third derivatives, ^—(c). Thus, they won't fit into a 

square matrix. We will denote these derivatives by 

fabc(c)where a, b, and c are each one of x.or y. The third 

derivative term when n= 2 ,  and "x" is(
X
 |, turns out to 

be 

3( f x x x ( c ) ( x  -  xo)
3
 + 3fxxy(c)(x - xo)

2
(y - yo)  

+ 3f x y y (c)(x - Xo)(y -  yo)
2
 + f „ „ (c)(y - yo)

3
).  

'   

Can you observe what the third order derivative would be when n= 3 ?   

What about the fourth derivative term for n= 2  and n= 3 ?   

MAXIMA AND MINIMA 

Positive definite quadratic forms . 

A quadratic form is a function Q :  R
n
 ! R of the form 

Q( u ) =u
T

Au 

for some symmetric n X n matrix A. The relevance of this to Taylor's 

Theorem is observen by looking at equations. 

Definition A symmetric matrix A is known "positive definite" if 

Q(u)> 0 for every u=0 in R
n
. 

There are two particularly useful criteria for 

determining of A is positive definite. These are from 

linear algebra, and won't be proved here. 

Theorem A symmetric n X  n matrix A is positive definite if either of 

the following 



Notes 

163 

conditions holds: 

All eigenvalues of A are positive 

All n "upper left" sub determinants of A are positive. 

An upper left sub determinant is one formed by deleting 

between zero and n of the last rows and columns of 

A/This will be illustrated in class. 

If A is a symmetric matrix and  —A is positive 

definite, then A is known negative definite. 

 

 

 

6.3 APPLICATION TO MAXIMA AND 

MINIMA 

 

The equation above allows us to determine criteria guaranteeing that a 

point 

xo is a local maximum or local minimum for the function f. To apply it, 

we must let that f 2 C
2
. There cannot be a local maximum at xo unless 

Df(xo)= 0 ,  for otherwise there is a nonzero directional derivative in 

some direction e, which means that 

d~r, 
f(x

o + 
t e )

|t=o=
0 ;  

dt 

and so there are larger values of f either for t positive or t negative, and 

|t| small. 

 

 

Definition x0 is known a "critical point" of f if Df(x0)=0 .  

We then repeat : 

f(x)= f(xo)+  Df(xo)(x - xo) +  D
2
f(c)(x - xo, x - xo). 

Assuming that Df(xo)= 0 ,  we get 

f(x)= f(xo)+ (x - xo)
T
 D

2
f(c)(x - xo).  

Theorem If xo is a critical point of f and the matrix corresponding to 
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D
2
f(xo) 

is positive definite, then xo is a local minimum for f. If D
2
f(xo)is 

negative definite, then xo is a local maximum. 

Proof. Suppose that xo is a critical point of f and A : =  D
2
f(xo)is positive 

definite. Then e
T
Ae > 0  for every unit vector e 2 R

n
. If u is a nonzero 

vector in R
n
, then e= is a unit vector. It follows that A is positive 

definite if and only if e
T
Ae > 0  for every unit vector e. But the set of 

all unit vectors in A is a compact set. Hence,  

 n =min e
T
Ae > 0. 

I|e |=1| 

Because D
2
f(x)is continuous, it follows that there is a 5 such that 

if ||c  — x|| < 5, then e
T
D

2
f(c)e > ^ > 0  for every unit vector e. Hence 

D
2
f is also positive definite.(i.e. the symmetric matrix corresponding to 

D
2
f(c)is positive definite.) 

If ||x  — xo|| <5 then ||c  — xo|| < 5, because c is on the line segment 

between x and xo. Equation then implies that if 0  < ||x  — xo|| < 5, then 

f(x)> f(xo). Hence xo is a local minimum for f. ■ 

 

6.4 SURFACES IN RN AND THE 

THEORY 

OF EXTREMA WITH CONSTRAINT 

To acquire an informal understanding of the theory of extrema with con- 

straint, which is important in applications, it is useful to have some 

elemen- 

tary information on surfaces(manifolds)in Rn. 

 

Fc-DIMENSIONAL SURFACES IN Rn 

Generalizing the concept of a law of motion of a point mass x=x(<=), we 

have 

previously introduced the concept of a path in Rn as a continuous 
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mapping 

r : I  —> Rn of an interval I C R. The degree of smoothness of the path 

was 

defined as the degree of smoothness of this mapping. The support f( /)C 

Rn 

of a path can be a rather peculiar set in Rn, which it would be a great 

stretch 

to call a curve in some instances. For example, the support of a path 

might 

be a single point. 

Similarly, a continuous or smooth mapping /: Ik  —> Rn of a ^-

dimensional 

interval Ik cRfc, known a singular k-cell in Rn, can have as its image 

f(Ik) 

not at all what one would like to call a ^-dimensional surface in Rn. For 

example, it might again be simply a point. 

In order for a smooth mapping /: G  —> Rn of a domain G C Rfc to 

define a ^-dimensional geometric figure in Rn whose points are 

described by 

k independent parameters(t1, ...,tk)G G, it suffices, as we know from the 

preceding section, to require that the rank of the mapping /: G  —> Rn be 

k at 

each point t G G(naturally, k < n). In that case the mapping /: G  —> 

f(G) 

is locally one-to-one(that is, in a neighborhood of each point t G G). 

Indeed, suppose rank /(to)=k and this rank is realized, for example, on 

the first k of the n functions 

' X1 = ,  

<    

= fn{ t\..., tk) 

that define the coordinate expressions for the mapping /: G  —> Rn.                     

Then, by the inverse function theorem the variables t1, ..., tk can be ex- 
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pressed in terms of x1, ... in some neighborhood U(to)of to- It follows 

that the set f(U(to)) can be written as 

=<pk+1(x1, ..., xk),...,xn=ipn{ x\..., xk) 

(that is, it projects in a one-to-one manner onto the coordinate plane of 

x1, ...,xfc), and therefore the mapping /: U(to) —> f(U(to)) is indeed one- 

to-one. 

However, even the simple example of a smooth one-dimensional path 

makes it clear that the local injectivity of the mapping /: G  —> Rn 

 

 

from the parameter domain G into Rn is by no means necessarily a global 

injectivity. The trajectory can have multiple self-intersections, so that if 

we 

wish to define a smooth ^-dimensional surface in Rn and picture it as a 

set 

that has the structure of a slightly deformed piece of a ^-dimensional 

plane 

(a ^-dimensional subspace of Rn)near each of its points, it is not enough 

merely to map a canonical piece G C Rfc of a ^-dimensional plane in a 

reg- 

ular manner into Rn. It is also necessary to be sure that it happens to be 

globally imbedded in this space. 

 

Definition . We shall call a set S C Rn a k-dimensional smooth surface in 

Rn(or a k-dimensional submanifold of Rn)if for every point xo G S there 

exist a neighborhood U(xo)in Rn and a diffeomorphism(p : U(xo) —> In 

of 

this neighborhood onto the standard n-dimensional cube In={ t G Rn| \tl\ 

< 
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1, i=1, ..., n } of the space Rn under which the image of the set SnU(xo)is 

the portion of the ^-dimensional plane in Rn defined by the relations 

tk+1 = 

0, ..., tn=0 lying  

 

 

 

We shall measure the degree of smoothness of the surface S by the 

degree 

of smoothness of the diffeomorphism(p. 

If we regard the variables t1, ..., tn as new coordinates in a neighborhood 

of U(xo), Definition 1 can be rewritten briefly as follows: the set S C Rn 

is 

a ^-dimensional surface(^-dimensional submanifold)in Rn if for every 

point 

xo G S there is a neighborhood U(xo)and coordinates in U(xo) 

such that in these coordinates the set S D U(xo)is defined by the relations 

tk+1=• • •=tn=0 . 

The role of the standard n-dimensional cube in Definition 1 is rather 

artificial and approximately the same as the role of the standard size and 

shape of a page in a geographical atlas. The canonical location of the 

interval 

in the coordinate system t1, ..., tn is also a matter of convention and 

nothing 
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more, since any cube in Rn can always be transformed into the standard 

n-dimensional cube by an additional linear diffeomorphism. 

We shall often use this remark when abbreviating the verification that a 

set S C Rn is a surface in Rn. 

Let us consider some examples. 

Example. The space Rn itself is an n-dimensional surface of class C^°°\ 

As 

the mapping(p : Rn  —> In here, one can take, for example, the mapping 

2 

C=~ arctan x%(i=1, ..., n) 

7T 

Example . The mapping constructed in Example 1 also establishes that 

the 

subspace of the vector space Rn defined by the conditions xfc+1=• • •=xn 

= 

0 is a ^-dimensional surface in Rn(or a ^-dimensional submanifold of 

Rn). 

 

Example . The set in Rn defined by the system of relations 

' ajx1 H b a\xh + <4+1xfc+1 H h a^x71=0, 

k V + • • • + al~kxk + al~kxk+l + • • • + a<=-'kxn=0, 

provided this system has rank n  — &, is a ^-dimensional submanifold of 

Rn. 

Indeed, suppose for example that the determinant is nonzero. Then the 

linear transformation 

tn=a?" V + • • • + aZ~kxn, 

is obviously nondegenerate. In the coordinates t1, ..., tn the set is defined 

by 

the conditions tk+1=• • •=tn=0, already considered in Example 2. 
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Example  The graph of a smooth function xn= /(x1, ..., xn_1)defined in 

a domain G C Rn-1 is a smooth(n  — l)-dimensional surface in Rn. 

Indeed, setting 

tl=xl(i=1, ..., n  — 1), 

 

 

we obtain a coordinate system in which the graph of the function has the 

equation tn=0. 

Example . The circle x2 + y2=1 in R2 is a one-dimensional submanifold 

of 

R2, as is established by the locally invertible conversion to polar 

coordinates 

(p, <p)studied in the preceding section. In these coordinates the circle has 

equation p=1. 

Example . This example is a generalization of Example and at the same 

time, as can be observen from Definition, gives a general form for the 

coordinate 

expression of submanifolds of Rn. 

Let Ft(x11..., xn)(i=1, ..., n  — k)be a system of smooth functions of 

rank n  — k. We shall show that the relations 

r F1(x1, ...,xfc, xfc+1, ...,xn)=0, 

(8.137) 

k Fn~k{ xl, ..., xk, xk+1, ..., xn)=0 

define a ^-dimensional submanifold S in Rn. 

Suppose the condition 

dF1 dF1 

dxkJtl dxn 

(x0)^ 0 



Notes 

170 

Qjpn-k Qpn-k 

dxkJtl dxn 

holds at a point xo G S. Then by the inverse function theorem the 

transfor- 

mation 

(ti=xi (i=1, ..., k), 

( tl=Fl~k(x1, ...,xn)(i=k + 1, ..., n) 

is a diffeomorphism of a neighborhood of this point. 

In the new coordinates t1, ..., tn the original system will have the form 

tk+1=-  —=tn=0; thus, S is a ^-dimensional smooth surface in Rn. 

 

Example. The set E of points of the plane R2 satisfying the equation x2  

— 

y2=0 consists of two lines that intersect at the origin. This set is not a 

one- 

dimensional sub manifold of R2(verify this!)precisely because of this 

point 

of intersection. 

If the origin 0 G R2 is removed from E, then the set E \ 0 will now 

obviously satisfy Definition 1. We remark that the set <='\0 is not 

connected. 

It consists of four pairwise disjoint rays. 

Thus a ^-dimensional surface in Rn satisfying Definition 1 can happen 

to be a disconnected subset consisting of several connected 

components(and 

these components are connected ^-dimensional surfaces). A surface in 

Rn is 

often taken to mean a connected ^-dimensional surface. Just now we 

shall be 

interested in the problem of finding extrema of functions defined on 

surfaces. 
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These are local problems, and therefore connectivity will not manifest 

itself 

in them. 

 

Example. If a smooth mapping /: G  —> Rn of the domain G C Rn 

defined 

in coordinate form has rank k at the point to G G, then there exists a 

neighborhood U(to)C G of this point whose image f(U(to)) C Rn 

is a smooth surface in Rn. 

Indeed, as already noted above, in this case relations can be re- 

placed by the equivalent system 

' xk+1 _ pk+1^1^ ^ ^ ^ ^ xk^ ^ 

<   (8.139) 

^ xn=^(x1, ...,xk) 

in some neighborhood U(to)of to <= G.(For simplicity of notation, we let 

that the system  /x, ..., fk has rank k.)Setting 

Fi(x\ ..., xn)=xk+i -  /+1(x\ ..., xk)(i=1, ..., n - k), 

the set f(U(to)) is indeed a ^-dimensional smooth surface in Rn 

6.5 THE TANGENT SPACE 

In studying the law of motion x=x(t)of a point mass in R3, starting from 

the relation 

x(t)=x(0)+ x'(0)<= + o(t)as t  —> 0  

and assuming that the point t=0 is not a critical point of the mapping 

R 3 t x(t)G R3, that is, x'(0)7^ 0, we defined the line tangent to the 

trajectory at the point x(0)as the linear subset of R3 given in parametric 

form by the equation 

x-x0=x'(0)t •  

or the equation 
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x - xo=<= • t,  

where xq=x(0)and <==x'(0)is a direction vector of the line. 

In essence, we did a similar thing in defining the tangent plane to the 

graph of a function z=f(x, y)in R3. Indeed, supplementing the relation 

z= /(x, y)with the trivial equalities x=x and y=y, we obtain a mapping 

R2 3(x, y)i->(x, 2 /,  /(x, y)) G R3 to which the tangent at the point(xo, 2 

/o) 

is the linear mapping 

=(0 1 )(®:®°).  

\z-zo)\ f'x(xo, yo)fy(x0, 2 /0)/ ^ ' 

where z0=f(x0, y0). 

Setting t=(x  — xo, y  — yo)and x=(x  — xo, y  — yo>z ~ ^0)here, and 

denoting the Jacobi matrix in for this transformation by x'(0), we 

remark that its rank is two and that in this notation relation has the 

form 

The peculiarity of relation is that only the last equality in the set 

of three equalities 

{  

X  — Xo=X  — Xo, 

y - yo=y - yo,  (8.144) 

^-^0=fx(xo, yo)(x-x0)+ ffao, y-0)(y-yo), 

to which it is equivalent is a nontrivial relation. That is precisely the 

reason 

it is retained as the equation defining the plane tangent to the graph of 

s= /(x, y)at(x0, yo, zo). 

This observation can now be used to give the definition of the k- 

dimensional plane tangent to a ^-dimensional smooth surface S C Rn. 

It can be observen from Definition 1 of a surface that in a neighborhood 

of 
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each of its points Xo G S a ^-dimensional surface S can be defined para- 

metrically, that is, using mappings Ik 3(t1, ..., ^)(x1, ...^71)G S. 

Such a parametrization can be taken to be the restriction of the 

mapping(p 1 : In  —> U(xo)to the ^-dimensional plane tk+1=• • •=tn=0  

Since(p~x is a diffeomorphism, the Jacobian of the mapping <p~x : In  

—> 

U(xo)is nonzero at each point of the cube In. But then the mapping Ik 3 

(t1, ..., tk)(x1, ..., xn)G S obtained by restricting <^-1 to this plane must 

also have rank k at each point of Ik. 

Now setting(t1, ...,tk)=t G Ik and denoting the mapping Ik 3 t »-> x G 

S by x=x(t), we obtain a local parametric representation of the surface S 

possessing the property expressed by(8.140), on the basis of which               

we take as the equation of the tangent space or tangent plane to the 

surface S C En at xo G S. 

Thus we adopt the following definition. 

Definition. If a ^-dimensional surface S C Rn, 1 < A; < n, is defined 

parametrically in a neighborhood of Xo G 5 by means of a smooth 

mapping 

(t1, ..., tk)=t x=(x1, ..., xn)such that Xo=x(0)and the matrix x'(0) 

has rank k, then the ^-dimensional surface in Rn defined parametrically 

by 

the matrix equality is known the tangent plane or tangent space to the 

surface S at xo G S. 

In coordinate form the following system of equations corresponds to Eq. 

xl~x°=+ ■ • •+ %^tk > 

dxn, ^., . dxn k 

dtl-(o)t1 + --- + -^ir(o)tk. 

We shall denote9 the tangent space to the surface S at x G 5, as before, 

by 

TSX. 
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An important and useful exercise, which the reader can do 

independently,  

is to prove the invariance of the definition of the tangent space and the 

verification that the linear mapping t x'(0)t tangent to the mapping t 

x(t), which defines the surface S locally, provides a mapping of the space 

= TRq onto the plane T5x(o)(observe Problem 3 at the end of this 

section). 

Let us now determine the form of the equation of the tangent plane to the 

^-dimensional surface S defined in Rn by the system. For definiteness 

we shall let that condition holds in a neighborhood of the point 

Xo G S. 

Setting(x\..., xfc)=u, (xfc+1, ..., xn)=v, (F1, ...,Fn~k)=F, we 

write the system in the form 

F(u, v)=0,   

6.6 DIFFERENTIAL CALCULUS IN 

SEVERAL VARIABLES 
 

F'v(u, v)7^ 0  

Using the implicit function theorem, in a neighborhood of the point 

(i<=o, ^o)=(#0' • • • >xo>xo+1> • • • >xo)we Pass from relation to the 

equivalent relation 

V=f(u),  

which, when we supplement it with the identity u  — u, yields the 

parametric 

representation of the surface S in a neighborhood of Xq G S: 

On the basis of Definition we obtain from the parametric equation . 

u  — Uo=E -1, 

v-v0=f'{ u0)■ t 

of the tangent plane; here E is the identity matrix and t=u  — Uq. 



Notes 

175 

Just as was done in the case of the system we retain in the system 

only the nontrivial equation 

v-vo=f'(uo)(u - uo) 

which contains the connection of the variables x1, ... with the variables 

<=fc+1, ..., xn that determine the tangent space. 

Using the relation 

f'(u0)=-[^(tio, «o)]_1[Fi(«o, «o)], 

which follows from the implicit function theorem, we rewrite as 

K(uo, v0)(u - Uo)+ F'v(uo -,vo){ v - v0)=0, 

from which, after returning to the variables(x1, ...,xn)=x, we obtain the 

equation we are observeking for the tangent space TSXq C Mn, namely 

F'x(xo)(x-x o)=0.  

In coordinate representation Eq. is equivalent to the system of 

equations 

iO /?! iO /?! 

^OroX*1 - xl)+ • • • + ^(*o)(»n - Off)=o, 

fpn—k rpn—k 

dx!(xo){ xl - Xq)+ • • • + dxn(x0){ xn - x$)=0 . 

By hypothesis the rank of this system is n  —  /c, and hence it defines a 

 /c-dimensional plane in Rn. 

The affine equation is equivalent(given the point xo)to the vector 

equation 

F'x(x oK=0,  

in which <==x  — xo. 

Hence the vector <= lies in the plane TSXo tangent at xo G S to the 

surface 

S C Rn defined by the equation F{ x)=0 if and only if it satisfies 

condition 
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Thus TSXo can be regarded as the vector space consisting of the 

vectors <= that satisfy  

It is this fact that motivates the use of the term tangent space. 

Let us now prove the following proposition, which we have already en- 

countered 

Proposition. The space TSXo tangent to a smooth surface S C Mn at a 

point 

xo G S consists of the vectors tangent to smooth curves lying on the 

surface 

S and passing through the point xo. 

Proof Let the surface S be defined in a neighborhood of the point xo G S 

by a system of equations, which we write briefly as 

F{ x)=0,  

where F=(F1, ..., Fn~k), x=(x1, ..., xn). Let JH : I  —> S be an arbitrary 

smooth path with support on S. Taking J={ tGR||t|<l }, we shall let 

that x(0)=xo. Since x(t)G S for t G  /, after substituting x{ t)into Eq. 

,  we obtain 

F(x(t))=0  

for tel. Differentiating this identity with respect to <=, we find that 

F'x(x(t))-x'{ t)=0. 

In particular, when t=0, setting <==^'(O), we obtain 

K(x o)<==0,  

that is, the vector <= tangent to the trajectory at xo(at time t=0)satisfies 

Eq. of the tangent space TSXo. 

We now show that for every vector <= satisfying Eq. there exists 

a smooth path T : I  —> S that defines a curve on S passing through xo at 

t=0 and having the velocity vector <= at time t  — 0. 
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This will simultaneously establish the existence of smooth curves on S 

passing through xo, which we letd implicitly in the proof of the first part 

of the proposition. 

Suppose for definiteness that condition holds. Then, knowing the 

first k coordinates <=x, ..., of the vector <==(<=x, ..., <=fc, <=fc+1, ..., 

<=n), we determine the other coordinates <=fc+1, ..., <=n uniquely from 

Eq(which is equivalent to the system). Thus, if we establish that a vec- 

tor <==(f1, ... ..., <=n)satisfies Eq. we can conclude that 

<=  — <=• We shall make use of this fact. 

Again, as was done above, we introduce for convenience the notation 

u=(x1, ...,xk), v=(xk+1, ...,xn), x=(x1, ...,xn)=(u, v), and F(x)= 

F(u, v). In the subspace Rk C Rn of the variables x1, ...,xk 

we choose a parametrically defined line 

X1 -xl =, 

  f G ]R, 

xk - »*=zkt,  

having direction vector(C1, • • •, <=fc), which we denote In more 

abbreviated 

notation this line can be written as 

u=uo + <=ut.  

Solving Eq. for v, by the implicit function theorem we obtain a 

smooth function, which, when the right-hand side of Eq. is 

substituted as its argument is taken account of, yields a smooth 

curve in Rn defined as follows: 

u=uo -f <=ut,  

t e 17(0)G R .  

v=f(uo 4- <=ut), 

Since F(u, f(u))=0, this curve obviously lies on the surface S. Moreover,  

it is clear from Eqs. that at t=0 the curve passes through the point 

(uo, v0)=(zj, ..., a:§, a;<=+1, ..., a#)=r0<=S. 
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Differentiating the identity 

F(u(t), v(t))=F(u0 + <=ut, f(u0 + <=ut))=0 

with respect to t, we obtain for t=0 

Fu(uOivo)€u 4- Fv(uo, vo)<=v=0, 

where <=u=i /(0)=(Cfc+1, ...,^n). This equality shows that the vector <= 

= 

(tu, tv) —(C1 ? • • • ? €k, • • • ? <=n)satisfies Eq. Thus by the remark 

made above, we conclude that <==<=. But the vector <= is the velocity 

vector 

at t=0 for the trajectory. The proposition is now proved.
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6.7 EXTREMA WITH CONSTRAINT 

Statement of the Problem One of the most brilliant and well-known 

achievements of differential calculus is the collection of recipes it 

provides 

for finding the extrema of functions. The necessary conditions and 

sufficient 

differential tests for an extremum that we obtained from Taylor's theorem 

apply, as we have noted, to interior extrema. 

In other words, these results are applicable only to the study of the be- 

havior of functions Rn 3 x f{ x)G R in a neighborhood of a point G Rn,  

when the argument x can let any value in some neighborhood of Xq in 

Rn.  Frequently a situation that is more complicated and from the 

practical 

point of view even more interesting arises, in which one observeks an 

extremum of 

a function under certain constraints that limit the domain of variation of 

the 

argument. A typical example is the isoperimetric problem, in which we 

observek 

a body of maximal volume subject to the condition that its boundary 

surface 

has a fixed area. To obtain a mathematical expression for such a problem 

that will be accessible to us, we shall simplify the statement and let that 

the problem is to choose from the set of rectangles having a fixed 

perimeter 

2p the one having the largest area a. Denoting the lengths of the sides of 

the 

rectangle by x and y, we write 

a(x, h)=x-y, 

x + y=p. 

Thus we need to find an extremum of the function a(x, y)under the 

condition that the variables x and y are connected by the equation x + 
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y=p. 

Therefore, the extremum is being sought only on the set of points of R2 

satisfying this relation. This particular problem, of course, can be solved 

without difficulty: it suffices to write y=p  — x and substitute this 

expression 

into the formula for a(x, y), then find the maximum of the function x(p  

— x) 

by the usual methods. We needed this example only to explain the 

statement 

of the problem itself. 

In general the problem of an extremum with constraint usually amounts 

to finding an extremum for a real-valued function 

y=f(x1, ..., xn)  

of n variables under the condition that these variables must satisfy a 

system 

of equations 

' Fl(xl, ..., xn)=0,  

<    

w Fm(x1, ...,xn)=0. 

Since we are planning to obtain differential conditions for an extremum,  

we shall let that all these functions are differentiate and even 

continuously differentiate. If the rank of the system of functions F1, ..., 

Fm is n  —  /c, conditions define a  /c-dimensional smooth surface S in 

Rn, and 

from the geometric point of view the problem of extremum with 

constraint 

amounts to finding an extremum of the function /on the surface S. More 

precisely, we are considering the restriction f\s of the function /to the 

surface 

S and observeking an extremum of that function. 

The meaning of the concept of a local extremum itself here, of course,  

remains the same as before, that is, a point xo G S is a local extremum of 
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/on,S, or, more briefly f\s, if there is a neighborhood10 Us(xo)of Xq in 

S C Rn such that f{ x)> f(xo)for any point x G Us(xo)(in which case xo 

is 

a local minimum)or f(x)< f{ xo)(and then Xo is a local maximum). If 

these 

inequalities are strict for x G Us(xo)\#o, then the extremum, as before, 

will 

be known strict. 

A Necessary Condition for an Extremum with Constraint 

Theorem . Let f : D  —> R be a function defined on an open set D CW1 

and belonging to C^(D; R). Let S be a smooth surface in D. 

A necessary condition for a point x$ G S that is noncritical for f to be a 

local extremum of f\s is that 

TSXn C TNXl 

where TSXo is the tangent space to the surface S at x$ and TNXo is the 

tangent space to the level surface N={ x G D\ f(x)=f(xo)} of f to which 

xo belongs. 

We begin by remarking that the requirement that the point xo be non- 

critical for /is not an essential restriction in the context of the problem of 

finding an extremum with constraint, which we are discussing. Indeed, 

even 

if the point Xo G D were a critical point of the function /: D -¥ R or an 

extremum of the function, it is clear that it would still be a possible or  

actual extremum respectively for the function f\s. Thus, the new element 

in 

this problem is precisely that the function f\s can have critical points and 

extrema that are different from those of  /. 

Proof We choose an arbitrary vector <= G TSXo and a smooth path 

x=x(t) 
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on S that passes through this point at t=0 and for which the vector <= is 

the velocity at t=0, that is,  

§«>)=<=.  

If xo is an extremum of the function f\s, the smooth function f[x(t)) 

must have an extremum at t=0. By the necessary condition for an ex- 

tremum, its derivative must vanish at t=0, that is, we must have 

 /'(«<>)- ^ 

Since Xo is a noncritical point of  /, condition is equivalent to the 

condition that <= g TNXo, for relation is precisely the equation of the 

tangent space TNXo. 

Thus we have proved that TSXq C TNXq . □ 

If the surface S is defined by the system of equations in a neighborhood 

of <=o, then the space T5Xo, as we know, is defined by the system of 

linear equations  and, since every solution of is a solution of the latter 

equation 

is a consequence  

It follows from these considerations that the relation TSXo C TNXo is 

equivalent to the analytic statement that the vector grad /(xo)is a linear 

combination of the vectors gradF2(xo), (i=1, ...,m), that is,  

grad /(a:o)=XigradFl(x0) 

2=1 

Taking account of this way of writing the necessary condition for an 

extremum of a function whose variables are connected by Lagrange 

proposed using the following auxiliary function when observeking a 

constrained extremum: 

L{ x, \)=fix)-J2Xipi(x) 

2=1 

in n -f m variables(x, A)=(x1, ..., xm, Ai, ..., An). 
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This function is known the Lagrange function and the method of using it 

is the method of Lagrange multipliers. 

The function is convenient because the necessary conditions for 

an extremum of it, regarded as a function of(x, A)=(x1, ..., xm, Ai, ..., 

An),  

are precisely  

Indeed,  

 /)f m f)F* 

1-1  

—Fl{ x)=0 (z=1, ..., m). 

Thus, in observeking an extremum of a function whose variables are 

subject to the constraints one can write the Lagrange function  

with undetermined multipliers and look for its critical points. If it is pos- 

sible to find Xo=(xj, ...,Xq)from the system without finding 

A=(Ai, ..., Am), then, as far as the original problem is concerned, that 

is what should be done. 

As can be observen from the multipliers A^(i=1, ..., m)are uniquely 

determined if the vectors grad Fl(xo)(i=1, ..., m)are linearly independent. 

The independence of these vectors is equivalent to the statement that the 

rank 

of the system is m, that is, that all the equations in this system are 

essential(none of them is a consequence of the others). 

This is usually the case, since it is letd that all the relations  

are independent, and the rank of the system of functions F1, ..., Fm is m 

at 

every point x G X. 

The Lagrange function is often written as 

m 

L(x, \)=f(x)+ J2*iFi(x),  

2=1 
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which differs from the preceding expression only in the inessential 

replace- 

ment of Ai by  — Ai.11 

 

Example . Let us find the extrema of a symmetric quadratic form 

n 

f(x)=Y, a, ijXlxj (ctij=aji) 

on the sphere 

n 

F(x)= -1=0-(8-170) 

2=1 

6.8 SURFACES IN RN AND 

CONSTRAINED EXTREMA  

 

Let us write the Lagrange function for this problem 

n /n \ 

L(X> X)= Y2 aijX%X1 ~ A ~ 1)' 

i, j=1 ^ i=l ' 

and the necessary conditions for an extremum of L(x, A), taking account 

of 

the relation aij=a^: 

dL f n \ 

q^{ x, A)=2( J2 aiix3 ~ Xxt)=0(i=I, -- -,"), 

<  
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JlfeA)=(E(,T-i)=o. 

Multiplying the first equation by x% and summing the first relation over 

i, we find, taking account of the second relation, that the equality 

n 

^2 - a=0  

i, j=1 

must hold at an extremum. 

The system minus the last equation can be rewritten as 

n 

dijxi=\xl(i=1, ..., n),  

2=1 

from which it follows that A is an eigenvalue of the linear operator A 

defined 

by the matrix(a^-), and x=(x1, ...,xn)is an eigenvector of this operator 

corresponding to this eigenvalue. 

Since the function which is continuous on the compact set S=ix G Mn|

           =must let its maximal value at some point, the 2= 1 J  

system and hence also must have a solution. Thus we have established 

along the way that every real symmetric matrix(a^)has at least one real 

eigenvalue. This is a result well-known from linear algebra, and is 

fundamental in the proof of the existence of a basis of eigenvectors for a 

symmetric operator. 

To show the geometric meaning of the eigenvalue A, we remark that if 

A > 0, then, passing to the coordinates t%=xl /V\ we find, instead of 

n 

Y2=1,  

M=1 

and, instead of  
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fy?=\ .  

2=1 

n 

But <=(t*)2 is the square of the distance from origin to the point 

2=1 

t=(t1, ...,tn), which lies on the quadric surface. Thus if 

represents, for example, an ellipsoid, then the reciprocal 1 /A of the 

eigen- 

value A is the square of the length of one of its semi-axes. 

This is a useful observation. It shows in particular that relations,  

which are necessary conditions for an extremum with constraint, are still 

not 

sufficient. After all, an ellipsoid in R3 has, besides its largest and 

smallest 

semi-axes, a third semi-axis whose length is intermediate between the 

two, in 

any neighborhood of whose endpoint there are both points nearer to the 

origin 

and points farther away from the origin than the endpoint. This last 

becomes 

completely obvious if we consider the ellipses obtained by taking a 

section of 

the original ellipsoid by two planes passing through the intermediate-

length 

semi-axis, one passing through the smallest semi-axis and the other 

through 

the largest. In one of these cases the intermediate axis will be the major 

semi- 

axis of the ellipse of intersection. In the other it will be the minor semi-

axis. 

To what has just been said we should add that if 1/is the length of this 

intermediate semi-axis, then, as can be observen from the canonical 



Notes 

187 

equation of 

an ellipsoid, A will be an eigenvalue of the operator A. Therefore the 

system which expresses the necessary conditions for an extremum of the 

function f\s    will indeed have a solution that does not give an extremum 

of the function. 

The result obtained in Theorem(the necessary condition for an extremum          

with constraint)is illustrated  The first of these figures explains why the 

point of the surface S cannot 

be an extremum of f\s if S is not tangent to the surface N={ x G Rn| f(x)= 

f(xo)=Co } at Xq. It is letd here that grad /(xo)7^ 0. This last condition 

guarantees that in a neighborhood of Xo there are points of a higher, C2-

level 

surface of the function /and also points of a lower, c\-level surface of the 

function. 

Since the smooth surface S intersects the surface AT, that is, the co-level 

surface of the smooth function  /, it follows that S will intersect both 

higher and lower level surfaces of /in a neighborhood of Xq. But this 

means that 

xo cannot be an extremum of f\s. 

The second figure shows why, when N is tangent to S at Xo, this point 

can turn out to be an extremum. In the figure Xo is a local maximum of 

f\s. 

These same considerations make it possible to sketch a picture whose 

analytic expression can show that the necessary criterion for an 

extremum is 

not sufficient. 

Indeed, in accordance with we set, for example,  

f(x, y)=y, F(x, y)=x3 -y=0 . 
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It is then obvious that y has no extremum at the point(0, 0)on the curve 

S C M2 defined by the equation y=x3, even though this curve is tangent 

to the level line f(x, y)= 0 of the function f at that point. We remark that 

grad /(0, 0)=(0, 1)^0. 

It is obvious that this is essentially the same example that served earlier 

to illustrate the difference between the necessary and sufficient 

conditions for a classical interior extremum of a function. 

6.9 SOME GEOMETRIC IMAGES 

CONNECTED WITH FUNCTIONS OF 

SEVERAL VARIABLES 

The Graph of a Function and Curvilinear Coordinates Let x, y, and z be 

Cartesian coordinates of a point in R3 and Let z= /(x, y)be a continuous 

function defined in some domain G of the plane R2 of the variables x and 

y. 

By the general definition of the graph of a function, the graph of the 

function          /: G  —» R in our case is the set S={(x, y, z)G R3|(x, y)G 

G, z= /(x, y)}           in the space R3. 

It is obvious that the mapping G  —> S defined by the relation(x, y)i-» 

(x, 2 /,  /(x, y)) is a continuous one-to-one mapping of G onto S, by 

which one 

can determine every point of S by exhibiting the point of G 

corresponding 

to it, or, what is the same, giving the coordinates(x, y)of this point of G. 

Thus the pairs of numbers(x, y)G G can be regarded as certain coordi- 

nates of the points of a set S - the graph of the function z= /(x, y). Since 

the points of S are given by pairs of numbers, we shall conditionally 

agree to 

call S a two-dimensional surface in R3.(The general definition of a 

surface 

will be given later.) 
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If we define a path T : I  —» G in G, then a path F o T : I  —» S 

automatically appears on the surface S. If x=x(t)and y=y(t)is a parametric 

definition of the path T, then the path F o T on S is given by the three 

functions x=x(<=), y=y(t), z=z(t)=f(x(t), y(t)). In particular, if we set 

x=xo +1, y=2 /0? we obtain a curve x=xo +1, y=yo, z=f(xo +1, yo)on the 

surface S along which the coordinate y=yo of the points of S does not 

change. Similarly one can exhibit a curve x=xo, y=yo + <=, z  — f(xo? 2 

/o + <=)on S along which the first coordinate xo of the points of S does 

not change. 

By analogy with the planar case these curves on S are naturally known 

coordinate lines on the surface S. However, in contrast to the coordinate 

lines in G C R2, which are pieces of straight lines, the coordinate lines on 

S are in general curves in R3. For that reason, the coordinates(x, y)of 

points of the 

surface S are often known curvilinear coordinates on S. 

Thus the graph of a continuous function z= /(x, y), defined in a domain 

G C R2 is a two-dimensional surface S in R3 whose points can be 

defined by 

curvilinear coordinates(x, y)G G. 

At this point we shall not go into detail on the general definition of a 

surface, since we are interested only in a special case of a surface - the 

graph 

of a function. However, we let that from the course in analytic geometry 

the reader is well acquainted with some important particular surfaces in 

R3 

(such as a plane, an ellipsoid, paraboloids, and hyperboloids). 

The Tangent Plane to the Graph of a Function Differentiability of 

a function z= /(x, y)at the point(xo, yo)G G means that 

 /(®> v)=f(xo, yo)+ A(x ~ xo)+ B(y - y0)+ 

+o(y /(x - x0)2 +(y - yo)2)as(x, y)->•(x0, yo) 

where A and B are certain constants. 

In R3 Let us consider the plane 
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z=z0 + A(x - x0)+ B(y - y0),  

where zo= /(xo, yo)• Comparing equalities, we observe that the 

graph of the function is well approximated by the plane in a neigh- 

borhood of the point(xo, yo, zo). More precisely, the point(x, y,  /(x, y)) 

of 

the graph of the function differs from the point(x, y, z(x, y)) of the plane 

by an amount that is infinitesimal in comparison with the magni- 

tude yj(x  — xo)2 +(y  — yo)2 of the displacement of its curvilinear 

coordinates 

(x, y)from the coordinates(xo^yo)of the point(xo, 2 /o?^o)- 

By the uniqueness of the differential of a function, the plane possessing 

this property is unique and has the form 

2=f(xo, yo)+ yo)(x - x0)+ yo)(y - yo)•  

This plane is known the tangent plane to the graph of the function z= /(x, 

y) 

at the point(x0, yo,  /(xo, yo)) • 

Thus, the differentiability of a function z=f(x, y)at the point(xo^yo) 

and the existence of a tangent plane to the graph of this function at the 

point 

(#0? 2 /o,  /(^o? Vo)) are equivalent conditions. 

The Normal Vector for the tangent plane in the canonical form 

|^(zo, yo)(x - xo)+ yo)(y - yo)-(2 - fix0, y0))=0. 

Check your Progress-1 

Discuss Taylor's Theorem, Maxima And Minima 

________________________________________________________ 

________________________________________________________ 

________________________________________________________ 

Discuss Differential Calculus In Several Variables 

_______________________________________________________ 
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________________________________________________________ 

________________________________________________________ 

6.10 LET US SUM UP 

In this unit we have discussed the definition and example of Taylor's 

Theorem, Maxima And Minima, Application To Maxima And 

Minima, Surfaces In Rn And The Theory Of Extrema With Constraint, 

The Tangent Space, Differential Calculus In Several Variables, Extrema 

With Constraint, Surfaces In Rn And Constrained Extrema, Some 

Geometric Images Connected With Functions Of Several Variables 

6.11 KEYWORDS 

1. Taylor's Theorem, Maxima And Minima: This is somewhat 

complicated, and the longest proof in either content here to carry the 

expansion out one more term than  thus adding a third derivative and 

discussing the resulting expression. 

2.Application To Maxima And Minima   The equation above 

allows us to determine criteria guaranteeing that a point 

xo is a local maximum or local minimum for the function f 

3. Surfaces In Rn And The Theory Of Extrema With Constraint   To 

acquire an informal understanding of the theory of extrema with  

constraint, which is important in applications, it is useful to have some 

elemen- 

tary information on surfaces(manifolds)in Rn. 

4.The Tangent Space   In studying the law of motion x=x(t)of a point 

mass in R3, starting from the relation x(t)=x(0)+ x'(0)<= + o(t)as t  —> 0 

5. Differential Calculus In Several Variables:    Using the implicit 

function theorem, in a neighborhood of the point 

(i<=o, ^o)=(#0' • • • >xo>xo+1> • • • >xo)we Pass from relation to the 

equivalent relation. 

6.Surfaces In Rn And Constrained Extrema   Lagrange function 
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7. Some Geometric Images Connected With Functions Of Several 

Variables 

8.The Graph of a Function and Curvilinear Coordinates Let x, y, and z be 

Cartesian coordinates of a point in R3 and Let z= /(x, y)be a continuous 

function defined in some domain G of the plane R2 of the variables x and 

y. 

6.12 QUESTIONS FOR REVIEW 

 

Explain Taylor's Theorem, Maxima And Minima  

Explain Differential Calculus In Several Variables 

6.13 ANSWERS TO CHECK YOUR 

PROGRESS 

 

Taylor's Theorem, Maxima And Minima 

     (answer for Check your Progress-1 

Q) 

Differential Calculus In Several Variable 

     (answer for Check your Progress-1 

Q) 

6.14 REFERENCES 

 Calculus of Several Variables 

 Advance Calculus of Several Variables 

 Analysis of Several Variables 

 Application of Several Variables 

 Function of Several Variables 
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UNIT - 7: A SUFFICIENT CONDITION 

FOR A CONSTRAINED EXTREMUM  

STRUCTURE 

7.0 Objectives 

7.1 Introduction 

7.2 A Sufficient Condition For A Constrained Extremum  

7.3 Differential Calculus, Differentiable Functions 

7.4 Functions Differentiable At A Point 

7.5 The Tangent Line; Geometric Meaning Of The Derivative And 

Differential 

7.6 The Role Of The Coordinate System 

7.7 Let Us Sum Up 

7.8 Keywords 

7.9 Questions For Review 

7.10 Answers To Check Your Progress 

7.11 References 

 

7.0 OBJECTIVES 

 

After studying this unit, you should be able to: 

Learn, Understand about A Sufficient Condition For A Constrained 

Extremum  

Learn, Understand about Differential Calculus Differentiable Functions 

Learn, Understand about Functions Differentiable At A Point 
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Learn, Understand about The Tangent Line; Geometric Meaning Of The 

Derivative And Differential 

Learn, Understand about The Role Of The Coordinate System 

 

7.1 INTRODUCTION 

In mathematics advanced calculus whose aim is to provide a firm logical 

foundation of analysis of calculus and a course in linear algebra treats 

analysis in one variable & analysis in several variables 

A Sufficient Condition For A Constrained Extremum, Differential 

Calculus Differentiable Functions, Functions Differentiable At A Point, 

The Tangent Line; Geometric Meaning Of The Derivative And 

Differential, The Role Of The Coordinate System 

 

 

7.2 A SUFFICIENT CONDITION FOR A 

CONSTRAINED EXTREMUM  

We now prove the following sufficient condition for the presence or 

absence of a constrained extremum. 

Theorem. Let f : D  —> R be a function defined on an open set DcRn 

and belonging to the class C^(D;R); Let S be the surface in D defined by 

Eqs. where F% G C^2^(D;R)(i=1, ...,m)and the rank of the system 

of functions { F1, ..., Fm } at each point of D is m. 

Suppose that the parameters Ai, ..., Am in the Lagrange function 

m 

L(x)=L(x;X)= /(x1, ..., xn)- ^ \iF\x1, ...,xn) 

2=1 
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have been chosen in accordance with the necessary criterion for a 

constrained extremum of the function f\s at xo G  

A sufficient condition for the point xo to be an extremum of the function 

f\s is that the quadratic form 

f)2 r 

~(xo)ee  

dxidxi 

be either positive-definite or negative-definite for vectors <= G TSXo. 

If the quadratic form is positive-definite on TSXo, then x$ is a 

strict local minimum of f\s; if it is negative-definite, then Xo is a strict 

local maximum. 

A sufficient condition for the point Xo not to be an extremum of f\s is 

that the form let both positive and negative values on TSXo. 

Proof We first note that L(x)=f{ x)for x G <S, so that if we show that x$ 

G 

S is an extremum of the function L\s, we shall have shown 

simultaneously that it is an extremum of f\s. 

By hypothesis, the necessary criterion for an extremum of f\s 

at xo is fulfilled, so that gradI /(xo)=0 at this point. Hence the Taylor 

expansion of L{ x)in a neighborhood of Xo=(xj, ..., Xq)has the form 

1 rP T .... 

L{  x)- L( x0)=2idxidxj(x o)(g* - 4)(xj ~A)+ °{ \\x ~ xof) 

as x  —> xo. 

We now recall that, in motivating Definition, we noted the possibility 

of a local(for example, in a neighborhood of Xo G S)parametric 

definition of a smooth  /c-dimensional surface S(in the present case,      

k=n  — m). 

In other words, there exists a smooth mapping 

R 3(t1, ..., tk)=t\-+ x=(x1, ..., xn)G Rn 
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(as before, we shall write it in the form x=x(t)), under which a 

neighborhood of the point 0=(0, ..., 0)G Rfc maps bijectively              to 

some neighborhood of Xo 

on 5, and xq=x(0). 

We remark that the relation 

x(t) — x(0)=^'(O)^ 4- o(||t||)as t  —> 0, 

which expresses the differentiability of the mapping t x(t)at t=0, is 

equivalent to the n coordinate equalities 

s*(i)- x'(0)=^(0)iQ + o(\\t\\)(i=1, ..., n),  

in which the index a ranges over the integers from 1 to k and the 

summation is over this index.  

It follows from these numerical equalities that 

|xl(t) — x2(0)|=0(||<=||)as t -> 0 

and hence 

IIx(t)- a;(0)||Rn=0(||i||Rfc)as t -> 0 .  

Using relations, we find that as t  —> 0 

L(x{ t))  — L(a:(0))=^dijL(xo)dax'l(0)di3x(0)tat<3 + o(p||2) 

Hence under the assumption of positive- or negative-definiteness of the 

form 

dijL(x0)daxi(0)0^x^0)^  

it follows that the function L(x(t)) has an extremum at t=0. If the form 

lets both positive and negative values, then L(x(t)) has no ex- 

tremum at t=0. But, since some neighborhood of the point 0 G Rk maps 

to a neighborhood of x(0)=Xo G S on the surface S under the mapping t 

i-» #(<=), we can conclude that the function L\s also will either have an 

extremum at xo of the same nature as the function L(#(<=)) or, like 

L(#(<=)), will not have an extremum. 



Notes 

197 

Thus, it remains to verify that for vectors <= G TSXo the expressions  

and are merely different notations for the same object. 

Indeed, setting 

<==x'(0)t,  

we obtain a vector <= tangent to S at xo, and if <==(<=x, ..., <=n), x{ t)= 

(x1, ..., xn)(t), and t=(t1, ...,tk), then 

<==dpx3(0)^(j=l, ..., n),  

from which it follows that the quantities are the same 

We note that the practical use of Theorem is hindered by the fact that 

only k  — n  — m of the coordinates of the vector <==(<=x, ...,<=n)G 

TSXo are independent, since the coordinates of <= must satisfy the 

system defining the space TSXo. Thus a direct application of the 

Sylvester criterion to the quadratic form generally yields nothing in the 

present case the form can not be positive- or negative-definite on TR<=o 

and yet be definite on TSXo. But if we express m coordinates of the 

vector <= in terms of the other k coordinates by relations and then 

substitute the resulting linear forms into, we arrive at a quadratic form in 

k variables whose positive- or negative-definiteness can be investigated 

using the Sylvester criterion. 

Let us clarify what has just been said by some elementary examples. 

Example. Suppose we are given the function 

f(x, y, z)=x2 -y2 + z2 

in the space R3 with coordinates x, y, z. We observe an extremum of this 

function on the plane S defined by the equation  

F(x, y1z)=2x  — y  — 3=0. 

Writing the Lagrange function 

L(x, y, z)=(x2 - y2 + z2)-  \(2x - y - 3) 

and the necessary conditions for an extremum 
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2x  — 2A=0, 

dL n  

tt~  —  —2 y + A  — 0, 

dy 

dL 

dz 

^= —{ 2x  — y  — 3)=0, 

we find the possible extremum p=(2, 1, 0). 

Next we find the form  

fatfe=(?)*-(?)* +(?)* 

We note that in this case the parameter A did not occur in this quadratic 

form, and so we did not compute it. 

We now write the condition <= E TSP: 

1  — <=2=0 . 

From this equality we find <=2=2<=x and substitute it into the form 

after which it lets the form 

where this time and <=3 are independent variables. 

This last form can obviously let both positive and negative values,  

and therefore the function f\s has no extremum at p E S. 

Example. Under the hypotheses of Example we replace R3 by R2 and 

the function /by 

f(x, y)=x2 - y2, 

retaining the condition 

2x  — y - 3=0, 

which now defines a line S in the plane R2. 

We find p=(2, 1)as a possible extremum. 

Instead of the form we obtain the form 
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(e1)2 -(<=2)2  

with the previous relation between and <=2. 

Thus the form now has the form 

-3(^)2 

on TSP, that is, it is negative-definite. We conclude from this that the 

point p=(2, 1)is a local maximum of f\s. 

The following simple examples are instructive in many respects. On 

them one can distinctly trace the working of both the necessary and the 

sufficient conditions for constrained extrema, including the role of the 

parameter and the informal role of the Lagrange function itself. 

Example. On the plane R2 with Cartesian coordinates(x, y)we are given 

the function 

f(x, y)=x2 + y2 . 

Let us find the extremum of this function on the ellipse given by the 

canonical relation 

x2 t /2 

y)= ~2 + = 

where 0 < a < b. 

It is obvious from geometric considerations that min /|^=a2 and 

max /|^=b2. Let us obtain this result on the basis of the procedures 

recommended  

By writing the Lagrange function 

L(x, y, a)=(x2 + y2)-a(^ + ~ *) 

and solving the equation dL=0, that is, the system  —  — 

find the solutions 

(x, y, A)=(±a, 0, a2), (0, ±b, b2). 
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Now in accordance with Theorem 2 we write and study the quadratic 

form 

\d2Z /<=2, the second term of the Taylor expansion of the Lagrange 

function in a neighborhood of the corresponding points: 

J**+(!-<=)«•>■. 

At the points(±a, 0)of the ellipse S the tangent vector <==(<=\<=2)has 

the form(0, <=2), and for A=a2 the quadratic form lets the form 

0-<=)<«2>2- 

Taking account of the condition 0 < a < 6, we conclude that this form 

is positive-definite and hence at the points(±a, 0)G S there is a strict 

local(and in this case obviously also global)minimum of the function f\s, 

that is,  

min /|g=a2. 

Similarly we find the form 

('-?)«■>•■ 

which corresponds to the points(0, ±b)G 5, and we find max /|^=b2. 

Remark. Note the role of the Lagrange function here compared with the 

role of the function  /. At the corresponding points on these tangent 

vectors the differential of  /(like the differential of L)vanishes, and the 

quadratic form 

|d 2 /€2=(C1)2 +(<=2)2 is positive definite at whichever of these points it 

is computed. Nevertheless, the function f\s has a strict minimum at the 

points 

(±a, 0)and a strict maximum at the points(0, ±b). 

To understand what is going on here, look again at the proof of Theorem. 

and try to obtain relation by substituting /for L in.             Note that an 

additional term containing ^"(O)arises here. The reason it does not 

vanish is that, in contrast to dL the differential df of /is not identically 

zero at the corresponding points, even though its values are indeed zero 

on the tangent vectors(of the form ^'(O)). 

Example. Let us find the extrema of the function 
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f(x, y, z)=x2+y2 + z2 

on the ellipsoid S defined by the relation 

F(s, y, *)=^ + g + 4- 1=0,  

az bz c 

where 0 < a < b < c. 

By writing the Lagrange function 

L{ x, y, z, \)=(x2 4-y2 -f z2) — ^(^2 + ^2 ^2 ~~ ' 

in accordance with the necessary criterion for an extremum, we find the 

solutions of the equation dL=0, that is, the system = §X=0: 

(x, y, z, X)=(±a, 0, 0, a2),(0, ±b, 0, b2),(0, 0, ±c, c2),  

On each respective tangent plane the quadratic form 

in each of these cases has the form 

(l-<=)(??+(l-<=)((>?, (a) 

+(>"?)«■>•■ « 

0-?)(«■)'+(i-p)<«2>'- (c) 

Since 0 < a < b < c, it follows from Theorem which gives a sufficient 

criterion for the presence or absence of a constrained extremum, that one 

can conclude that in cases(a)and(c), we have found respectively min 

/|^=a2 and max /|^=c2, while at the points(0, ±6, 0)G S corresponding to 

case 

(b)the function f\s has no extremum. This is in compLete agreement with 

the obvious geometric considerations stated in the discussion of the 

necessary criterion for a constrained extremum. 

Certain other aspects of the concepts of analysis and geometry encoun- 

tered in this section, which are sometimes quite useful, including the 

physical interpretation of the problem of a constrained extremum itself, 

as well as the necessary criterion for it as the resolution of forces at an 

equilibrium point and the interpretation of the Lagrange multipliers as 

the magnitude of the reaction of ideal constraints. 
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7.3 DIFFERENTIAL CALCULUS 

DIFFERENTIABLE FUNCTIONS 

Statement of the Problem and Introductory Considerations 

Suppose, following Newton, 12 we wish to solve the Kepler problem of 

two bodies, that is, we wish to explain the law of motion of one celestial 

body m(a planet)relative to another body M(a star). We take a Cartesian 

coordinate system in the plane of motion with origin at M. Then the 

position of m at time t can be characterized numerically by the 

coordinates(x(t), y(t)) of the point in that coordinate system. We wish to 

find the functions x(t)and y(t). 

 

 

The motion of m relative to M is governed by Newton's two famous 

laws: the general law of motion 

ma=F, 

connecting the force vector with the acceleration vector that it produces 

via the coefficient of proportionality m - the inertial mass of the body and 

the law of universal gravitation, which makes it possible to find the 

gravitational action of the bodies m and M on each other according to the 

formula 

_ „mM . . 

= "jrj^r'  
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where r is a vector with its initial point in the body to which the force is 

applied and its terminal point in the other body and |r| is the length of the 

vector r, that is, the distance between m and M. 

Knowing the masses m and M, we can easily use to express 

the right-hand side in terms of the coordinates x(t)and y(t)of 

the body m at time <=, and thereby take account of all the data for the 

given motion. 

To obtain the relations on x(t)and y(t)contained in we must 

learn how to express the left-hand side of in terms of x(t)and y(t). 

Acceleration is a characteristic of a change in velocity v(<=). More 

precisely, it is simply the rate at which the velocity changes. Therefore, 

to solve the problem we must first of all learn how to compute the 

velocity v(<=)at time t possessed by a body whose motion is described 

by the radius-vector r(t)=(x(t), y(t)). 

Thus we wish to define and learn how to compute the instantaneous 

velocity of a body that is implicit in the law of motion  

To measure a thing is to compare it to a standard. In the present case,  

what can serve as a standard for determining the instantaneous velocity 

of motion  

The simplest kind of motion is that of a free body moving under     

inertia. This is a motion under which equal displacements of the body in 

space(as vectors)occur in equal intervals of time. It is the so-known 

uniform(rectilinear)motion. If a point is moving uniformly, and r(0)and 

r(l)are its radius-vectors relative to an inertial coordinate system at times 

t=0 and t=1 respectively, then at any time t we shall have 

r(t) — r(0)=v • t,  

where v=r(l) — r(0). Thus the displacement r(t) — r(0)turns out to be a 

linear function of time in this simplest case, where the role of the 

constant of proportionality between the displacement r(t) — r(0)and the 

time t is played by the vector v that is the displacement in unit time. It is 

this vector that we call the velocity of uniform motion. The fact that the 

motion is rectilinear can be observen from the parametric representation 
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of the trajectory: r(<=)=r(0)+ v • t, which is the equation of a straight 

line, as you will recall from analytic geometry. 

We thus know the velocity v of uniform rectilinear motion given. By the 

law of inertia, if no external forces are acting on a body, it 

moves uniformly in a straight line. Hence if the action of M on m were to 

cease at time t, the latter would continue its motion, in a straight line at a 

certain velocity from that time on. It is natural to regard that velocity as 

the instantaneous velocity of the body at time t. 

However, such a definition of instantaneous velocity would remain a 

pure abstraction, giving us no guidance for explicit computation of the 

quantity, if not for the circumstance of primary importance that we are 

about to discuss. 

While remaining within the circle we have entered(logicians would call it 

a "vicious" circle)when we wrote down the equation of motion and then 

undertook to determine what is meant by instantaneous velocity and 

acceleration, we nevertheless remark that, even with the most general 

ideas about these concepts, one can draw the following heuristic 

conclusions. If there is no force, that is, F=0, then the acceleration is also 

zero. But if the rate of change a(<=)of the velocity v(<=)is zero, then the 

velocity v(<=)itself must not vary over time. In that way, we arrive at the 

law of inertia, according to which the body indeed moves in space with a 

velocity that is constant in time. 

From this same Equation we can observe that forces of bounded magni- 

tude are capable of creating only accelerations of bounded magnitude. 

But if the absolute magnitude of the rate of change of a quantity P(t)over 

a time interval [0, t] does not exceed some constant c, then, in our picture 

of the situation, the change |P(t) — P(0)| in the quantity P over time t 

cannot exceed c • t, that is, in this situation, the quantity changes by very 

little in a small interval of time.(In any case, the function P(t)turns out to 

be continuous.) 

Thus, in a real mechanical system the parameters change by small 

amounts over a small time interval. 
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In particular, at all times t close to some time to the velocity v(t)of the 

body m must be close to the value v(to)that we wish to determine. But in 

that case, in a small neighborhood of the time to the motion itself must 

differ by only a small amount from uniform motion at velocity v(<=q), 

and the closer to to, the less it differs. 

If we photographed the trajectory of the body m through a telescope,  

depending on the power of the telescope The portion of the trajectory 

corresponds to a time interval so small that it is difficult to distinguish 

the actual trajectory from a straight line, since this portion of the 

trajectory really does resemble a straight line, and the motion resembles 

uniform rectilinear motion. From this observation, as it happens, we can 

conclude that by solving the problem of 

determining the instantaneous velocity(velocity being a vector quantity) 

will at the same time solve the purely geometric problem of defining and 

finding the tangent to a curve(in the present case the curve is the 

trajectory of motion). 

Thus we have observed that in this problem we must have v(t)« v(<=o) 

for t close to to, that is, v(t)v(<=o)as t to, or, what is the same,  

v(t)=v(to)+ o(l)as t to- Then we must also have 

r(t)- r(t0)« v(*0)•(t - t0) 

for t close to to. More precisely, the value of the displacement r(t) — 

r(to)is equivalent to v(to)(t  — to)as t to, or 

r(t)- r(t0)=v(t0)(t - t0)+ o(v(t0)(t - t0)),  

where o(v(to)(t  — to)) is a correction vector whose magnitude tends to 

zero faster than the magnitude of the vector v(to)(t—to)as t to. Here, 

naturally, we must except the case when v(to)=0. So as not to exclude 

this case 

from consideration in general, it is useful to observe that13 |v(<=o)(<=  

— ^o)|=|v(to)| 11  — to\. Thus, if |v(to)| 7^ 0, then the quantity \v(to)(t  
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— <=o)| is of the same order as \t  — to \, and therefore o(v(to)(t  — 

to))=o(t  — to). Hence, instead of we can write the relation 

r(t)- r(t0)=v(t0)(t - t0)+ o(t - t0), 

which does not exclude the case v(to)=0. Thus, starting from the most 

general, and perhaps vague ideas about 

velocity, we have arrived at which the velocity must satisfy. But 

the quantity v(to)can be found unambiguously 

v('«»=<=?„ r('llt?o)•  

Therefore both the fundamental relation and the relation equivalent to it 

can now be taken as the definition of the quantity v(to), the 

instantaneous velocity of the body at time 

At this point we shall not allow ourselves to be distracted into a detailed 

discussion of the problem of the limit of a vector-valued function. 

Instead, we shall confine ourselves to reducing it to the case of the limit 

of a real valued function, which has already been discussed in compLete 

detail. Since the vector r(<=) — r(to)has coordinates(x(t) — x(to), y(t) — 

y(to)), we have in a position to answer the question whether a pair of 

functions(x(t), y(t)) can describe the motion of the body m about the 

body M. To answer this question, one must find x(t)and y(t)and check 

whether hold. The system is an example of a system of so-known 

differential equations. At this point we can only check whether a set of 

functions is a solution of the system. How to find the solution or, better 

expressed, how to investigate the 

properties of solutions of differential equations is studied in a special 

and, as one can now appreciate, critical area of analysis - the theory of 

differential equations. 

The operation of finding the rate of change of a vector quantity, as has 

been shown, reduces to finding the rates of change of several numerical-

valued 

functions - the coordinates of the vector. Thus we must first of all learn 

how to carry out this operation easily in the simplest case of real-valued 

functions of a real-valued argument, which we now take up. 
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7.4 FUNCTIONS DIFFERENTIABLE AT A 

POINT 

We begin with two preliminary definitions that we shall shortly make 

precise. 

Definition Oi. A function /: E R defined on a set E C R is differentiate 

at a point a <= E that is a limit point of E if there exists a linear function 

A -(x  — a)of the increment x  — a of the argument such that f(x) — 

f(a)can be represented as 

f(x) — f(a)=A •(x  — a)+ o(x  — a)as x a, x <= E .  

In other words, a function is differentiable at a point a if the change in its 

values in a neighborhood of the point in question is linear up to a 

correction that is infinitesimal compared with the magnitude of the 

displacement x  — a from the point a. 

Remark. As a rule we have to deal with functions defined in an entire 

neighborhood of the point in question, not merely on a subset of the 

neighborhood. 

Definition. The linear function A •(x  — a)in is known the differential of 

the function /at a. The differential of a function at a point is uniquely 

determined; for it follows from that 

f(x) — f(a)..(. o(x  — a)\  A 

lim = lim A +   }- J=A, 

EBx-±a X  — a E3x-±a \ X  — a  / 

so that the number A is unambiguously determined due to the uniqueness 

of the limit.  

Definition. The number 

 /(«)= Um MiiM  

e^x—Yd x  — a 

is known the derivative of the function /at a. 
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Relation can be rewritten in the equivalent form 

f(x)-f(a) 

———=f(a)+a(x),  

where a(x)0 as x a, x <= E, which in turn is equivalent to 

f(x) — f(a)=f(a)(x  — a)+ o(x  — a)as x a, x <= E .  

Thus, differentiability of a function at a point is equivalent to the 

existence of its derivative at the same point. 

If we compare these definitions with what was said in Subsect., we 

can conclude that the derivative characterizes the rate of change of a 

function at the point under consideration, while the differential provides 

the best linear approximation to the increment of the function in a 

neighborhood of the same point. 

If a function /: E R is differentiable at different points of the set 

E, then in passing from one point to another both the quantity A and the 

function o(x  — a)in Eq.(5.9)can change(a result at which we have 

already arrived explicitly. This circumstance should be noted in the very 

definition of a differentiable function, and we now write out this 

fundamental definition in full. 

Definition . A function /: E R defined on a set E C R is differentiable 

at a point x <= E that is a limit point of E if 

f(x + h) — f(x)=A(x)h + ol{ x\ h),  

where h h-* A(x)h is a linear function in h and a(x;h)=o(h)as h 0,  

x -j- h <= E. 

The quantities 

Ax{ h):=(x + h) — x=h 

and 

Af(x; h):= f(x + h)- f(x) 

are known respectively the increment of the argument and the increment 

of the function(corresponding to this increment in the argument). 
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They are often denoted(not quite legitimately, to be sure)by the symbols 

Ax and Af(x)representing functions of h. 

Thus, a function is differentiable at a point if its increment at that point, 

regarded as a function of the increment h in its argument, is linear up to a 

correction that is infinitesimal compared to h as h 0. 

 

Definition. The function h h-* A(x)h of Definition which is linear in  /i,  

is known the differential of the function f : E at the point x G E and is 

denoted d f(x)or Df(x). 

Thus, df{ x){ h)=A{ x)h. 

Prom Definitions we have 

Af(x; h)- df(x)(h)=a(x; h), 

and a(x;h)=o(h)as h 0, x + h G E; that is, the difference between 

the increment of the function due to the increment h in its argument and 

the value of the function df(x), which is linear in  /i, at the same  /i, is an 

infinitesimal of higher order than the first in h. 

For that reason, we say that the differential is the(principal)linear part 

of the increment of the function. 

As follows from relation and Definition,  

A(*)= /'(*)=lim + 

 /i->o h 

x+h, x<=E 

and so the differential can be written as 

d f(x)(h)=f(x)h . 

In particular, if f(x)=x, we obviously have f'(x)=1 and 

dx{ h)=1 • h=h, 
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so that it is sometimes said that "the differential of an independent 

variable equals its increment". 

Taking this equality into account, we deduce from that 

df(x)(h)=f'(x)dx(h),  

that is,  

d /Oz)=f(x)dx . 

The equality should be understood as the equality of two functions 

of h. we obtain 

that is, the function(the ratio of the functions d f(x)and dx)is constant 

and equals f(x). For this reason, following Leibniz, we frequently denote 

the derivative by the symbol, alongside the notation f'(x)proposed by 

Lagrange. 

In mechanics, in addition to these symbols, the symbol ip(t)(read "phi-

dot of t")is also used to denote the derivative of the function ip(t)with 

respect to time t. 

 

7.5 THE TANGENT LINE; GEOMETRIC 

MEANING OF THE DERIVATIVE AND 

DIFFERENTIAL 

Let /: E R be a function defined on a set E C R and xq a given limit 

point of E. We wish to choose the constant cq so as to give the best 

possible description of the behavior of the function in a neighborhood of 

the point xq among constant functions. More precisely, we want the 

difference f(x) — Co to be infinitesimal compared with any nonzero 

constant as x xo, x <= E, that is 

f(x)=Co + o(l)as x -> xo, x <= E .  

This last relation is equivalent to saying lim f(x)=cq. If, in particular the 

function is continuous at xo, then lim f(x)=f(xo), and naturally 

EBx-±x o 
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Co=f(x o). 

Now Let us try to choose the function Co + c\{ x  — xq)so as to have 

f(x)=Co + ci(x  — xo)+ o(x  — xo)as x  —> xo, x e E .  

This is obviously a generalization of the preceding problem, since the 

formula can be rewritten as 

f(x)=Co + o((x  — xo)°)as x -> xo, x e E . 

It follows immediately from that Co=lim f(x), and if the 

EBx—tx o 

function is continuous at this point, then Co=f(xo). 

If cq has been found, it then follows from that 

oi  — iim  . 

E3x—^xo X  — Xq 

And, in general, if we were observeking a polynomial  

Pn(xo; x)=Co + c \(x  — xo)+   

V cn{ x  — xq)71 such that 

f(x)=Co + ci(x - xo)H  

h cn(x - x0)n + o((x - x0)n) 

as x x0, x <= E,                     

we would find successively, with no ambiguity that 

Co=lim f(x), 

E3x—>x o 

ci=*im 

EBx-±x o x x° 

^  /(x)-[coH hcn_i(x-x0)n x] 
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Cn  — ^ lim (rr_T\n > 

<=9x-»x0 ^ 

assuming that all these limits exist. Otherwise condition cannot be 

fulfilled, and the problem has no solution. 

If the function /is continuous at xo, it follows from, as already 

pointed out, that Co=f(xo), and we then arrive at the relation 

f(x) — f(x0)=ci(x  — x0)+ o(x  — xo)as x x0, x G E, 

which is equivalent to the condition that f(x)be differentiable at xq. 

Prom this we find 

C1= lim 

E3x->x o X  — Xq 

We have thus proved the following proposition. 

 

Proposition . A function f : E  —>]R that is continuous at a point xq G E 

that is a limit point of E Cl admits a linear approximation if and only if it 

is differentiable at the point 

The function 

(p(x)=Co + ci(x - x0)  

with Co=f(xo)and c\=f'{ xo)is the only function of the form. 

Thus the function 

ip(x)=f(xo)+ f'(xo)(x - x0)  

provides the best linear approximation to the function /in a neighborhood 

of xo in the sense that for any other function <p(x)of the form we have 

f(x) — if(x)7^ o(x  — xo)as x xq, x E E. 

The graph of the function is the straight line 

y-f(xo)=f'(x0)(x-x0), 
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passing through the point(xo, f(xo)) and having slope f'(xo). 

Since the line provides the optimal linear approximation of the 

graph of the function y=f(x)in a neighborhood of the point(xo, f(xo)), it 

is natural to make the following definition. 

 

Definition . If a function f : E M is defined on a set E C R and 

differentiable at a point xo G the line defined is known the 

tangent to the graph of this function at the point(xo, f(xo))       illustrates 

all the basic concepts we have so far introduced in 

connection with differentiability of a function at a point: the increment of 

the argument, the increment of the function corresponding to it, and the 

value of the differential. The figure shows the graph of the function, the 

tangent to the graph at the point Po=(xo, f(xo))> and for comparison, an 

arbitrary line(usually known a secant)passing through Po and some point 

P ^ Po of the graph of the function. 

f{ x o + h) 

f(x o) 

Xo Xo + h X 

Definition . If the mappings f : E R and g : E  —>■ R are continuous at 

a point xo € E that is a limit point of E and f(x) — g(x)=o((x  — xo)n) 

as x  —>■ Xo, x <= P, we say that /and g have nth order contact at 

xo(more precisely, contact of order at least n). 

For n=1 we say that the mappings /and g are tangent to each other at 

xo. 

According to Definition the mapping is tangent at Xo to a mapping f : E 

R that is differentiable at that point. 

We can now also say that the polynomial Pn(xo; x)=Co + ci(x  — xo)+ - 

+ cn(x  — x0)n of relation has contact of order at least n with the 

function  /. 
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The number h=x  — xo, that is, the increment of the argument, can be 

regarded as a vector attached to the point Xq and defining the transition 

from #o to x=#o + h. We denote the set of all such vectors by TR(#o)or 

TTHXo Similarly, we denote by TR(? /o)or TRyo the set of all 

displacement vectors from the point yo along the y-axis. It can then be 

observen from the definition of the differential that the mapping 

d /(*o): TR(xo)TR( /(®o)), 

defined by the differential h i—>• f'(xo)h=df(xo)(h)is tangent to the 

mapping 

h i-> f(xo + h)- f(x0)=Af(x0; h), 

defined by the increment of a differentiable function. 

ordinate of the graph of the function y=f(x)as the argument passes from 

#o to #o + then the differential gives the increment in the ordinate 

of the tangent to the graph of the function for the same increment h in the 

argument. 

 

7.6 THE ROLE OF THE COORDINATE 

SYSTEM 

The analytic definition of a tangent can be the cause of some 

vague uneasiness. We shall try to state what it is exactly that makes one 

uneasy. However, we shall first point out a more geometric construction 

of the tangent to a curve at one of its points Po. 

Take an arbitrary point P of the curve different from Po. The line 

determined by the pair of points Po and P, as already noted, is known a 

secant in relation to the curve. We now force the point P to approach Po 

along the curve. If the secant tends to some limiting position as we do so, 

that limiting position of the secant is the tangent to the curve at Po-

Despite its intuitive nature, such a definition of the tangent is not 

available to us at the moment, since we do not know what a curve is, 

what it means to say that "a point tends to another point along a curve", 
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and finally, in what sense we are to interpret the phrase "limiting position 

of the secant". 

Rather than make all these concepts precise, we point out a fundamental 

difference between the two definitions of tangent that we have 

introduced. The second was purely geometric, unconnected(at least until 

it is made more precise)with any coordinate system. In the first case, 

however, we have defined the tangent to a curve that is the graph of a 

differentiate function in some coordinate system. The question naturally 

arises whether, if the curve is written in a different coordinate system, it 

might not cease to be different iable, or might be different iable but yield 

a different line as tangent when the computations are carried out in the 

new coordinates. 

This question of invariance, that is, independence of the coordinate 

system, always arises when a concept is introduced using a coordinate 

system. 

The question applies in equal measure to the concept of velocity, which 

we discussed in Subsect. and which as we have mentioned already, 

includes the concept of a tangent. 

Points, vectors, lines, and so forth have different numerical characteris 

tics in different coordinate systems(coordinates of a point, coordinates of 

a vector, equation of a line). However, knowing the formulas that 

connect two coordinate systems, one can always determine from two 

numerical representations of the same type whether or not they are 

expressions for the same geometric object in different coordinate 

systems. Intuition suggests that the 

procedure for defining velocity described in Subsect. leads to the same 

vector independently of the coordinate system in which the computations 

are carried out. At the appropriate time in the study of functions of 

several variables we shall give a detailed discussion of questions of this 

sort. The invariance of the definition of velocity with respect to different 

coordinate systems will be verified in the next section. 

Before passing to the study of specific examples, we now summarize 

some of the results. 
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We have encountered the problem of the describing mathematically the 

instantaneous velocity of a moving body. 

This problem led us to the problem of approximating a given function in 

the neighborhood of a given point by a linear function, which on the 

geometric level led to the concept of the tangent Functions describing the 

motion of a real mechanical system are letd to admit such a linear 

approximation. 

In this way we have distinguished the class of differentiable functions in 

the class of all functions. 

The concept of the differential of a function at a point has been intro- 

duced. The differential is a linear mapping defined on displacements 

from the point under consideration that describes the behavior of the 

increment of a differentiable function in a neighborhood of the point, up 

to a quantity that is infinitesimal in comparison with the displacement. 

The differential df(xo)h=f(xo)h is compLetely determined by the num- 

ber f'{ xo), the derivative of the function /at Xo, which can be found by 

taking the limit 

rM=Bm m-fM 

E3x-±xq X  — Xq 

The physical meaning of the derivative is the rate of change of the 

quantity  /(x)at time xo; its geometrical meaning is the slope of the 

tangent to the graph of the function y=f(x)at the point(xo,  /(#o))- 

 

Some Examples 

Example. Let f(x)=sinx. We shall show that f'{ x)=cosx. 

Proof. 

s\n(x + h)-smx 2 sin(4)cos(x + 4) 

lim  — /=lim— = 

h—>-0 h h—>-0 h 
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1. 

f h\ .. Sin(I) 

= lim cos [x -f - • lim  —, =cos x . □ 

h—*0 V 2/h—*0(|) 

Here we have used the theorem on the limit of a product, the continuity 

of the function cosx, the equivalence sint ~ t as t  —>■ 0, and the 

theorem on 

the limit of a composite function. 

 

Example. We shall show that cos' x= — sin x. 

Proof. 

cos(x + h)-cosx —2 sin(^)sin(x -t- j) 

lim  —-=lim   

h—>-0  

ft 

h—>-0  

h 

.. . /h\ .. sin(|). 

=  — lim sin [x -f - • lim  —, ,\= — sin x . □ 

h—>0 V 2/ /i—>o(|) 

 

Example. We shall show that if f{ t)=r cos art, then  /'(<=)= — no sin 

out. 

Proof. .. r cosouit -f  /i) — r cosout ..  —2sin(^)sinu;(<=-f §) 

lim = r lim— = 

h—>-0  
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h 

h—>-0 h 

. f h \ sin(^) . 

=  — ruo lim sinw[t -f  — • lim  —/\ f= —ruosmuot. □ 

h^o \ 2 J h->o(^) 

 

Example. The instantaneous velocity and instantaneous acceleration of a 

point mass. Suppose a point mass is moving in a plane and that in some 

given coordinate system its motion is described by differentiate functions 

of 

time 

X=X(t), y=y(t) 

or, what is the same, by a vector 

r(t)=(x(t), y(t)) . 

As we have explained in Subsect., the velocity of the point at time t is 

the vector 

v(t)=r(i)=(x(t), y(t)), 

where x(t)and y(t)are the derivatives of x(t)and y(t)with respect to time t. 

The acceleration a(t)is the rate of change of the vector v(<=), so that 

a(<)=v(t)=r(i)=(x(t), y(t)), 

where x(t)and y(t)are the derivatives of the functions x(t)and y(t)with 

respect to time, the so-known second derivatives of x(t)and y(t). 

Thus, in the sense of the physical problem, functions x(t)and y(t)that 

describe the motion of a point mass must have both first and second               

derivatives. 

In particular, Let us consider the uniform motion of a point along a circle 

of radius r. Let u be the angular velocity of the point, that is, the 
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magnitude 

of the central angle over which the point moves in unit time. 

In Cartesian coordinates(by the definitions of the functions cos# and 

sinx)this motion is written in the form 

r(t)=(rcos(ut + a), rsin(ut + a)), 

and if r(0)=(r, 0), it lets the form 

r(t)=(r cos ut, r sin ut). 

Without loss of generality in our subsequent deductions, for the sake of 

brevity, we shall let that r(0)=(r, 0). 

v(t)=r(<=)=(—ru sin ut, ru cos ut). 

From the computation of the inner product 

(v(t), r(t))= —r2u sinu)t cosut + r2cu cos ut sinut=0, 

as one should expect in this case, we find that the velocity vector v(t)is 

or- 

thogonal to the radius-vector r(<=)and is therefore directed along the 

tangent 

to the circle. 

Next, for the acceleration, we have 

a(<=)=v(t)=r(t)=(—rev2 cos ut,  —rev2 sinu;<=), 

that is, a(t)= — u;2r(<=), and the accleration is thus indeed centripetal, 

since 

it has the direction opposite to that of the radius-vector r(<=). 

Moreover,  

|a(*)|=w2|r(i)|=w2r = =  —, 

r r 

where v=|v(t)|. 
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Starting from these formulas, Let us compute, for example, the speed of a 

low-altitude satellite of the Earth. In this case r equals the radius of the 

earth,  

that is, r=6400 km, while |a(<=)|=#, where g « 10m /s2 is the acceleration 

of free fall at the surface of the earth. 

Thus, v2=|a(<=)|r « 10m /s2 x 64 • 105m=64 • 106(m /s)2, and so 

v « 8 • 103 m /s. 

 

Example. The optic property of a parabolic mirror. Let us consider the 

parabola y=^x2(p > 0, observe Fig. 5.4), and construct the tangent to it at 

the point(x0, yo)=(xo, ^«o)- 

Since f(x)=^x2, we have 

f'(x0)=lim ^ lim(x + x0)=-x0 . 

x^-xo X  — Xq Zp x^xq p 

Hence the required tangent has the equation 

V~Y*o=~* o(x-xo) 

2p p 

or 

-x0(x - Xo)-(y - yo)=0,  

P 

where y0=^x%. 

 

 

The vector n = as can be observen from this last equation, is 
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orthogonal to the line whose equation. We shall show that the vectors 

ey=(0, 1)and e /=(  — #o, § ~~ 2 /o)form equal angles with n. The vector 

ey 

is a unit vector directed along the ? /-axis, while e/is directed from the 

point 

of tangency(#o, 2 /o)=(xo? ^xo)to the point(0j f)' which is the focus of 

the parabola. Thus we have shown that a wave source located at the 

point(0, |), the 

focus of the parabola, will emit a ray parallel to the axis of the mirror(the 

y-axis), and that a wave arriving parallel to the axis of the mirror will 

pass 

through the focus. 

 

Example. With this example we shall show that the tangent is merely the 

best linear approximation to the graph of a function in a neighborhood of 

the 

point of tangency and does not necessarily have only one point in 

common 

with the curve, as was the case with a circle, or in general, with convex 

curves. 

(For convex curves we shall give a separate discussion.) 

Let the function be given by 

( x2 sin i, if X ^ 0, 

 /(*)={  

[ 0, if x=0 . 

The graph of this function is shown by the thick line 
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Let us find the tangent to the graph at the point(0, 0). Since 

»/f^.\ x2sin<=—0 .. .1 _ 

 /(0)=lim  = lim x sm  —=0, 

a—>o x - 0 z—>o x 

the tangent has the equation y  — 0=0 •(x  — 0), or simply y=0. 

Thus, in this example the tangent is the x-axis, which the graph intersects 

infinitely many times in any neighborhood of the point of tangency. 

By the definition of differentiability of a function /: E  —>■ R at a point 

xo <= E, we have 

 /(x)-  /(x0)=A(x0)(x - x0)+ o(x - x0)as x x0, x <= E . 

Since the right-hand side of this equality tends to zero as x  —xq, x e E,  

it follows that lim f{ x)=f{ xo), so that a function that is differentiate 

E3x^xq 

at a point is necessarily continuous at that point. 

We shall show that the converse, of course, is not always true. 

Example. Let f{ x)=|x|, Then at the point xo=0 we have 

|im <=HW=lim !f^o= lim = 
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x—^xo—0 X  — Xo x->-0 x  — 0 x—>—0 x 

llm  /w - fM=lim = 1|m x =! 

x-txo+0 X  — Xo a:->+0 x  — 0 z->+0 x 

Consequently, at this point the function has no derivative and hence is 

not differentiate at the point. 

 

 

Example. We shall show that ex+h  — ex=exh + o(h)as h  —>■ 0. 

Thus, the function exp(x)=e* is differentiate and dexp(x)h=exp(x)/i,  

or de*=exdx, and therefore exp'x=expx, or=ex. 

Proof. 

ex+h _ex= ex(eh _l- }=ex(h + = exh + 

Here we have used the formula eh  — 1=h + o(h) 

Example. If a > 0, then ax+h  — ax=ah(\na)h + o(h)as h  —>■ 0. Thus 

dax=ax(\na)dx and=ax In a. 

Proof. 

ax+h _ax=ax(ah _ J)=ax(ehlna _y = 

= ax( /ilna + o(hlna))=ax(lna)/i + o(h)as h  —>• 0 . □ 

Example. If x ^ 0, then In |a: + h\  — In |m|=+ o(h)as h  —> 0. Thus 

dln|ar|=±dx and ± 

Proof. 

h 

In \x + h\  — In b|=In |l H— . 

x 
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For |ft| < \x\ we have |l -f=1 -f and so for sufficiently small values of 

h we can write 

In \x + h\  — In |x|=In(l +=- + o(-)= —h + o{ h) 

\ xJ x \xJ x 

as h  —>■ 0. Here we have used the relation ln(l -f1)=t -f o(t)as <=  —

>■ 0,  

 

Example. If x /0 and 0 < a /1, then loga \x+h\  — loga |x|=^^h+o(h) 

as ft -»• 0. Thus, d loga |x|=^dz and dl°f<=N = 

Proof. 

loga |« + ^| - loga M=^ga |l +=loga(* + = 

= r— ln(i + -)=7~■("+°(~))= —f-h + o(h). 

ma V x/ma\x \xJJ xma 

Here we have used the formula for transition from one base of logarithms 

 

 

Check your Progress-1 

Discuss A Sufficient Condition For A Constrained Extremum 

________________________________________________________ 

________________________________________________________ 

________________________________________________________ 

Discuss Functions Differentiable At A Poin 

_______________________________________________________ 

________________________________________________________ 

________________________________________________________ 
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7.7 LET US SUM UP 

In this unit we have discussed the definition and example of A Sufficient 

Condition For A Constrained Extremum, Differential Calculus, 

Differentiable Functions, Functions Differentiable At A Point, The 

Tangent Line; Geometric Meaning Of The Derivative And Differential, 

The Role Of The Coordinate System 

7.8 KEYWORDS 

1. Differential Calculus, Differentiable Functions   Statement of the 

Problem and Introductory Considerations. 

2. Functions Differentiable At A Point: We begin with two preliminary 

definitions that we shall shortly make precise. 

3.The Tangent Line; Geometric Meaning Of The Derivative And 

Differential  Let /: E R be a function defined on a set E C R and xq a 

given limit point of E. 

4. The Role Of The Coordinate System : The analytic definition of a 

tangent can be the cause of some vague uneasiness. We shall try to state 

what it is exactly that makes one uneasy. However, we shall first point 

out a more geometric construction of the tangent to a curve at one of its 

points Po. 

 

7.9 QUESTIONS FOR REVIEW 

Explain A Sufficient Condition For A Constrained Extremum  

Explain Functions Differentiable At A Point 

 

7.10 ANSWERS TO CHECK YOUR 

PROGRESS 
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A Sufficient Condition For A Constrained Extremum  

        

 (answer for Check your Progress-1 Q) 

 

Functions Differentiable At A Point 

      (answer for Check your Progress-1 

Q) 

7.11 REFERENCES 
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